Skip to main content
Log in

Utilization of fish meal and fish oil for production of Cryptococcus sp. MTCC 5455 lipase and hydrolysis of polyurethane thereof

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Fish meal has been used as an additional nitrogen source and fish oil as inducer for the growth and production of lipase from Cryptococcus sp. MTCC 5455. A response surface design illustrated that the optimum factors influencing lipase production were fish meal, 1.5 %, w/v, Na2HPO4, 0.2 %, w/v, yeast extract, 0.25 %, w/v and sardine oil, 2.0 %, w/v with an activity of 71.23 U/mL at 96 h and 25 °C, which was 48.39 % higher than the conventional one-factor-at-a-time method. The crude concentrated enzyme hydrolyzed polyurethane (PUR) efficiently and hydrolysis was 94 % at 30 °C and 96 h. The products, diethylene glycol and adipic acid were quantified by HPLC and scanning electron microscopic studies of the degraded polymer showed significant increase in size of the holes from 24 to 72 h of incubation. Hydrolysis of PUR within 96 h makes the lipase novel for disposal of PUR and provides an innovative solution to the problems created by plastic wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Awan MS, Khan SA, Rehman ZU, Saleem A, Rana SM, Rajoka MI (2010) Influence of nitrogen sources on production of β-galactosidase by Aspergillus niger. Afr J Biotechnol 9:2918–2922

    CAS  Google Scholar 

  • Chakraborty K, Raj RP (2008) An extra-cellular alkaline metallolipase from Bacillus licheniformis MTCC 6824: purification and biochemical characterization. Food Chem 109:727–736

    Article  CAS  Google Scholar 

  • Chartrain M, Marcin C, Katz L, Salmon P, Brix T, Buckland B, Greasham R (1993) Enhancement of lipase production during fed-batch cultivation of Pseudomonas aeruginosa MB 5001. J Ferment Bioeng 76:487–492

    Article  CAS  Google Scholar 

  • Chen LC, Pirofski LA, Casadevall A (1997) Extracellular proteins of Cryptococcus neoformans and host antibody response. Infect Immun 65:2599–2605

    CAS  Google Scholar 

  • Contesini FJ, Lopes DB, Macedo GA, Nascimento MD, Carvalho PD (2010) Aspergillus sp lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67:163–171

    Article  CAS  Google Scholar 

  • Crabbe JR, Campbell JR, Thompson L, Walz SL, Schultz WW (1994) Biodegradation of a colloidal ester-based polyurethane by soil fungi. Int Biodeterior Biodegradation 33:103–113

    Article  Google Scholar 

  • Dhake KP, Krishna MD, Yogesh PP, Rekha SS, Bhalchandra MB (2011) Improved activity and stability of Rhizopus oryzae lipase via immobilization for citronellol ester synthesis in supercritical carbon dioxide. J Biotechnol 156:46–51

    Article  CAS  Google Scholar 

  • Ellouz Y, Bayoudh A, Kammoun S, Gharsallah N, Nasri M (2001) Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour. Bioresour Technol 80:49–51

    Article  CAS  Google Scholar 

  • Esakkiraj P, Dhas GAJ, Palavesam A, Immanuel G (2010) Media preparation using tuna-processing wastes for improved lipase production by shrimp gut isolate Staphylococcus epidermidis CMST Pi 2. Appl Biochem Biotechnol 160:1254–1265

    Article  CAS  Google Scholar 

  • Garcia-Gomez MJ, Huerta-Ochoa S, Loera-Corral O, Prado-Barragan LA (2009) Advantages of a proteolytic extract by Aspergillus oryzae from fish flour over a commercial proteolytic preparation. Food Chem 112:604–608

    Article  CAS  Google Scholar 

  • Gautam R, Bassi AS, Yanful EK (2007a) A review of biodegradation of synthetic plastic and foams. Appl Biochem Biotechnol 141:85–108

    Article  CAS  Google Scholar 

  • Gautam R, Bassi AS, Yanful EK, Cullen E (2007b) Biodegradation of automotive waste polyester polyurethane foam using Pseudomonas chlororaphis ATCC55729. Int Biodeterior Biodegradation 60:245–249

    Article  CAS  Google Scholar 

  • Ghorbel S, Souissi N, Triki-Ellouz Y, Dufosse L, Guerard F, Nasri M (2005) Preparation and testing of Sardinella protein hydrolysates as nitrogen source for extracellular lipase production by Rhizopus oryzae. World J Microbiol Biotechnol 21:33–38

    Article  CAS  Google Scholar 

  • Ghribi D, Sayari A, Gargouri Y, Bezzine S (2009) Improvement of Staphylococcus xylosus lipase production through optimization of the culture conditions. Eur J Lipid Sci Technol 111:967–971

    Article  CAS  Google Scholar 

  • Herbst D, Peper S, Niemeyer B (2012) Enzyme catalysis in organic solvents: influence of water content, solvent composition and temperature on Candida rugosa lipase catalyzed transesterification. J Biotechnol 162:398–403

    Article  CAS  Google Scholar 

  • Ikemoto M, Ota Y (1996) Production of two types of non-specific lipases by Geotrichum sp FO 274A: a fish oil-assimilating strain. J Gen Appl Microbiol 42:371–379

    Article  CAS  Google Scholar 

  • Isobe K, Akiba T, Yamaguchi S (1988) Crystallization and characterization of lipase from Penicillium cyclopium. Agric Biol Chem 52:41–47

    Article  CAS  Google Scholar 

  • Kamini NR, Iefuji H (2001) Lipase catalyzed methanolysis of vegetable oils in aqueous medium by Cryptococcus spp. S-2. Process Biochem 37:405–410

    Article  CAS  Google Scholar 

  • Kamini NR, Fujii T, Kurosu T, Iefuji H (2000) Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp S-2. Process Biochem 36:317–324

    Article  CAS  Google Scholar 

  • Kim YD, Kim SC (1998) Effect of chemical structure on the biodegradation of polyurethanes under composting conditions. Polymer Degrad Stab 62:343–352

    Article  CAS  Google Scholar 

  • Lou WY, Zong MH, Liu YY, Wang JF (2006) Efficient enantioselective hydrolysis of D, L-phenylglycine methyl ester catalyzed by immobilized Candida antarctica lipase B in ionic liquid containing systems. J Biotechnol 125:64–74

    Article  CAS  Google Scholar 

  • Makhzoum A, Knapp JS, Owusu RK (1995) Factors affecting growth and extracellular lipase production by Pseudomonas fluorescens 2D. Food Microbiol 12:277–290

    Article  CAS  Google Scholar 

  • Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 71:7548–7550

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Onuma F, Kimpara N, Nakahara T (1995) Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen-source. FEMS Microbiol Lett 129:39–42

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Onuma F, Akutsu Y, Nakahara T (1997) Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans stain TB-35. J Ferment Bioeng 83:456–460

    Article  CAS  Google Scholar 

  • Pérez-Gálvez R, Guadix A, Almécija MC, Guadix EM, Bergé JP (2012) Response surface modeling of the multiphase juice composition from the compaction of sardine discards. Food Bioprocess Technol 5:2172–2182

    Article  Google Scholar 

  • Pignede G, Wang HJ, Fudalej F, Gaillardin C, Seman M, Nicaud JM (2000) Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol 182:2802–2810

    Article  CAS  Google Scholar 

  • Rai AK, Swapna HC, Bhaskar N, Halami PM, Sachindra NM (2010) Effect of fermentation ensilaging on recovery of oil from fresh water fish viscera. Enzyme Microb Technol 46:9–13

    Article  CAS  Google Scholar 

  • Ramakrishnan V, Goveas LC, Halami PM, Narayan B (2013) Kinetic modeling, production and characterization of an acidic lipase produced by Enterococcus durans NCIM5427 from fish waste. J Food Sci Technol. doi:10.1007/s13197-013-1141-5

    Google Scholar 

  • Rao PV, Jayaraman K, Lakshmanan CM (1993) Production of lipase by Candida rugosa in solid state fermentation. 2: medium optimization and effect of aeration. Process Biochem 28:391–395

    Article  CAS  Google Scholar 

  • Risholm-Sundman M, Vestin E (2005) Emissions during combustion of particleboard and glued veneer. Holz Als Roh-Und Werkstoff 63:179–185

    Article  CAS  Google Scholar 

  • Rowe L, Howard GT (2002) Growth of Bacillus subtilis on polyurethane and the purification and characterization of a polyurethanase-lipase enzyme. Int Biodeterior Biodegradation 50:33–40

    Article  CAS  Google Scholar 

  • Sellami-Kamoun A, Ghorbel-Frikha B, Haddar A, Nasri M (2011) Enhanced Bacillus cereus BG1 protease production by the use of sardinelle (Sardinella aurita) powder. Ann Microbiol 61:273–280

    Article  CAS  Google Scholar 

  • Souissi N, Bougatef A, Triki-ellouz Y, Nasri M (2009) Production of lipase and biomass by Staphylococcus simulans grown on sardinella (Sardinella aurita) hydrolysates and peptone. Afr J Biotechnol 8:451–457

    CAS  Google Scholar 

  • Thirunavukarasu K, Edwinoliver NG, Anbarasan SD, Gowthaman MK, Iefuji H, Kamini NR (2008) Removal of triglyceride soil from fabrics by a novel lipase from Cryptococcus sp S-2. Process Biochem 43:701–706

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank The Director, Central Leather Research Institute, Chennai, India for his kind permission to publish this work. We also acknowledge for the grants from Department of Biotechnology, Government of India and the financial assistance extended by Council of Scientific and Industrial Research, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Kamini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirunavukarasu, K., Purushothaman, S., Gowthaman, M.K. et al. Utilization of fish meal and fish oil for production of Cryptococcus sp. MTCC 5455 lipase and hydrolysis of polyurethane thereof. J Food Sci Technol 52, 5772–5780 (2015). https://doi.org/10.1007/s13197-014-1697-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1697-8

Keywords

Navigation