Skip to main content
Log in

2β-hydroxybetulinic acid 3β-caprylate: an active principle from Euryale Ferox Salisb. seeds with antidiabetic, antioxidant, pancreas & hepatoprotective potential in streptozotocin induced diabetic rats

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the glycemic control, antioxidant, pancreas and liver protective effect of 2β-hydroxybetulinic acid 3β-caprylate (HBAC) from Euryale ferox Salisb. seeds on streptozotocin induced diabetic rats. The active principle was isolated from Euryale ferox Salisb. seeds extract by utilizing chromatographic techniques. The rats were divided into seven experimental groups: Gp 1-normal; Gp2- normal + HBAC (60 mg/kg p.o.); Gp3- diabetic control; Gp 4- Diabetic + HBAC (20 mg/kg p.o.); Gp5- Diabetic + HBAC (40 mg/kg p.o.); Gp6- Diabetic + HBAC (60 mg/kg p.o.) and Gp 7- Diabetic + Glibenclamide (10 mg/kg p.o.). Biochemical estimation, free radical scavenging examination and histopathological study was performed at the end of experimentation i.e. on 28th day. The active principle isolated and identified with spectral data as 2β-hydroxybetulinic acid 3β-caprylate (HBAC). It was detected for the first time that HBAC has improvised the glycemic control in streptozotocin induced diabetic rats. Furthermore, it is remarkable to note that it exhibited excellent free radical scavenging property and pancreas and hepatoprotective property as well, supported by histopathological examination. One of the mechanisms of action of HBAC appears to be stimulating the release of insulin from pancreatic β-cells. HBAC improved the glycemic control, reduced the free radical activity along with corrected glycemic control, lipid profile, and enhanced level of insulin alongh with improvement in pancreas and hepatoprotective architecture. Considering the above results, HBAC shows potential to develop a medicine for diabetes as combinatorial or mono-therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4

Similar content being viewed by others

References

  • Ahmed D, Sharma M, Pillai KK (2012) The effects of triple vs. dual and monotherapy with rosiglitazone, glimepiride, and atorvastatin on lipid profile and glycemic control in type 2 diabetes mellitus rats. Fundam Clin Pharmacol 26:621–631

    Article  CAS  Google Scholar 

  • Ahmed D, Sharma M, Mukerjee A, Ramteke PW, Kumar V (2013) Improved glycemic control, pancreas protective and hepatoprotective effect by traditional poly-herbal formulation “Qurs Tabasheer” in streptozotocin induced diabetic rats. BMC Complement Altern Med 13:10

    Article  Google Scholar 

  • Ahmed D, Kumar V et al (2014) Antidiabetic, renal/hepatic/pancreas/ cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on streptozotocin induced diabetic rats. BMC Complement Altern Med 14:243

    Article  Google Scholar 

  • Ali M (2001) Techniques in terpenoid identification. Birla Publication, Delhi

  • Baquer NZ, Gupta D, Rajo J (1998) Regulations of metabolic pathways in liver and kidney during experimental diabetes. Effect of antidiabetic compounds. Indian J Clin Biochem 13:63–80

    Article  CAS  Google Scholar 

  • Burns N, Gold B (2007) The effect of 3-methyladenine DNA glycosylase-mediated DNA repair on the induction of toxicity and diabetes by the beta-cell toxicant streptozotocin. Toxicol Sci 95:391–400

    Article  CAS  Google Scholar 

  • Ceriello A, Giugliano D, Quatraro A, Dello Russo P, Lefebvre PJ (1991) Metabolic control may influence the increased superoxide generation in diabetic serum. Diabetic Med 8:540–542

    Article  CAS  Google Scholar 

  • Chang WS, Wang SM, Zhou LL, Hou FF, Wang KJ, Han QB, Li N, Cheng YX (2011) Isolation and identification of compounds responsible for antioxidant capacity of Euryale ferox seeds. J Agric Food Chem 59(4):1199–1204

    Article  Google Scholar 

  • Crevost C, Petelot A (1929) Catalogue des produits del Indochina. Plant Medicinales. Ann Chim 32:122

    Google Scholar 

  • Dragendroff G, Die Heilpflazen der verschiedenen, Volker, Zeiten (1989) Stuttgart, 885

  • Dutta RN, Jha SN, Jha UN (1986) Plant contents and quality of makhana (Euryale ferox). Plant Soil 96:429–432

    Article  CAS  Google Scholar 

  • Edelman D, Olsen MK, Dudley TK, Harris AC, Oddone EZ (2004) Utility of hemoglobin A1c in predicting diabetes risk. J Gen Intern Med 19:1175–1180

    Article  Google Scholar 

  • Emerit J, Pelletier S, Likforman J, Pasquier C, Thuillier A (1991) Phase II trial of copper zinc superoxide dismutase (CuZn-SOD) in the treatment of Crohn’s disease. Free Radic Res Commun 12–13:563–569

    Article  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  Google Scholar 

  • Fridovich I (1972) Superoxide radical and superoxide dismutase. Acc Chem Res 5:321–326

    Article  CAS  Google Scholar 

  • Fuliang HU, Hepburn H, Xuan H, Chen M, Daya S, Radloff SE (2005) Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacol Res 51:147–152

    Article  CAS  Google Scholar 

  • Gillery E, Monboisse JC, Maquart FX, Borrel JP (1989) Does free oxygen radical increased formation explain long term complications of diabetes mellitus? Med Hypotheses 29:47–50

    Article  CAS  Google Scholar 

  • Giugliano D, Ceriello A, Paolisso G (1996) Oxidative stress and diabetic vascular complications. Diabetes Care 19(3):257–267

    Article  CAS  Google Scholar 

  • Gopalsamy RG, Pautu V, Antony S, Santiagu SI, Savarimuthu I, Michael GP (2014) Polyphenols-rich Cyamopsis tetragonoloba (L.) Taub. Beans show hypoglycemic and b-cells protective effects in type 2 diabetic rats. Food Chem Toxicol 66:358–365

    Article  Google Scholar 

  • Grover JK, Vats V, Rathi SS (2000) Antihyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. J Ethnopharmacol 73(3):461–470

    Article  CAS  Google Scholar 

  • Gylling H, Tuomineu JA, Koivisto VA, Miettineu TA (2004) Cholesterol metabolism in type 1 diabetes. Diabetes 53:2217–2222

    Article  CAS  Google Scholar 

  • Ketterer B (1986) Detoxification reactions of glutathione and glutathione reductase. Xenobiotica 16:957–975

    Article  CAS  Google Scholar 

  • Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    Article  CAS  Google Scholar 

  • Kumar J, Menon V (1992) Peroxidative changes in experimental diabetes mellitus. Indian J Med Res 96:176–181

    CAS  Google Scholar 

  • Kumar V, Ahmed D, Anwar F, Ali M, Mujeeb M (2013a) Enhanced glycemic control, pancreas protective, antioxidant and hepatoprotective effects by umbelliferon-α-D-glucopyranosyl-(2I → 1II)-α-D-glucopyranoside in streptozotocin induced diabetic rats. SpringerPlus 2:639

    Article  Google Scholar 

  • Kumar V, Ahmed D, Gupta PS, Anwar F, Mujeeb M (2013b) Anti-diabetic, anti-oxidant and anti-hyperlipidemic activities of Melastoma malabathricum Linn. leaves in streptozotocin induced diabetic rats. BMC Complement Altern Med 13:222

    Article  Google Scholar 

  • Kumar V, Anwar F, Ahmed D, Verma A, Ahmed A, Damanhouri ZA, Mishra V, Ramteke PW, Bhatt PC, Mujeeb M (2014) Paederia foetida Linn. leaf extract: Anantihyperlipidemic, antihyperglycaemic and antioxidant activity. BMC Complement Altern Med 14:76

    Article  Google Scholar 

  • Lee SE, Ju EM, Kim JH (2002) Antioxidant activity of extracts from Euryale ferox seed. Exp Mol Med 34(2):100–106

    Article  CAS  Google Scholar 

  • Li LJ, Wu Y, Cao B (2007) Research progress of Euryale ferox seeds. China Veget 81–83

  • Liu TS (1952) List of economic plants of Taiwan. Taipei Taiwan, 163

  • Lucy D, Anoja S, Chu-Su Y (2002) Alternative therapies for Type 2 diabetes. Altern Med Rev 7:45–58

  • Majithiya JB, Balaraman R (2005) Time-dependent changes in antioxidant enzymes and vascular reactivity of aorta in streptozotocin-induced diabetic rats treated with curcumin. J Cardiovasc Pharmacol 46(5):697–705

    Article  CAS  Google Scholar 

  • Nadkarni KM (1976) The Indian Materia Media. Popular Prakashan Bombay, 530

  • Neelamegam K, Natarajan A (2014) Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats. Toxicol Appl Pharmacol 279:173–185

    Article  Google Scholar 

  • Patil MA, Suryanarayana P, Putcha UK, Srinivas M, Bhanuprakash Reddy G (2014) Evaluation of neonatal streptozotocin induced diabetic rat model for the development of cataract. Oxid Med Cell Longev 1–10

  • Puri A, Sahai R, Singh KL (2000) Immunostimulant activity of dry fruits and plants materials used in Indian traditional medical system for mothers after child birth and invalids. J Ethnopharmacol 71(1–2):89–92

    Article  CAS  Google Scholar 

  • Qujeq D, Habibinudeh M, Daylmkatol H, Rezvani T (2005) Malonaldehyde and carbonyl contents in the erythrocytes of STZ-induced diabetic rats. Int J Diabetes Metab 13:96–98

    CAS  Google Scholar 

  • Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:2351–42354

    Article  Google Scholar 

  • Roi J (1955) Traite des plantes medicinales chinoises Paris, 125.

  • Sharma PV (2005) Dravya guna Vinjana. Part II. Chaukhamba bharati academy Varanasi, 565

  • Stuart GA (1911) Chinese Materia Medica. Vegetable Kingdom. 558

  • Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546

    Google Scholar 

  • Thomson PD, Till GO, Wooliscroft JO, Smith DJ, Prasad LK (1990) Superoxide dismutase prevents lipid peroxidation in burned patients. Burns 16:406–408

    Article  CAS  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    Article  Google Scholar 

  • Wolff SP (1993) Diabetes mellitus and free radicals. Br Med Bull 49:642–652

    CAS  Google Scholar 

  • Wu CY, Chen R, Wang XS, Shen B, Yue W, Wu Q (2013) Antioxidant and Anti-fatigue activities of phenolic extract from the seed coat of Euryale ferox Salisb and identification of three phenolic compounds by LC-ESI-MS/MS. Molecules 18:11003–11021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the authorities of Sam Higginbottom Institute of Agriculture, Technology and Sciences for providing necessary facilities. Authors are also thankful to the SAIF, Chandigarh for spectral data analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danish Ahmed or Manju Sharma.

Additional information

Research highlights

1. Isolation of compounds from Euryale ferox salisb. were done.

2. Antidiabetic & antioxidant activities were investigated.

3. Histopathological examinations were envisaged.

4. Possible mechanism of antidiabetic action of isolated compounds were examined

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, D., Sharma, M., Kumar, V. et al. 2β-hydroxybetulinic acid 3β-caprylate: an active principle from Euryale Ferox Salisb. seeds with antidiabetic, antioxidant, pancreas & hepatoprotective potential in streptozotocin induced diabetic rats. J Food Sci Technol 52, 5427–5441 (2015). https://doi.org/10.1007/s13197-014-1676-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1676-0

Keywords

Navigation