Skip to main content

Advertisement

Log in

Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Plants contain numerous components that are important sources of new bioactive molecules with antimicrobial properties. Isothiocyanates (ITCs) are plant secondary metabolites found in cruciferous vegetables that are arising as promising antimicrobial agents in food industry. The aim of this study was to assess the antibacterial activity of two isothiocyanates (ITCs), allylisothiocyanate (AITC) and 2-phenylethylisothiocyanate (PEITC) against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. The antibacterial mode of action was also characterized by the assessment of different physiological indices: membrane integrity, intracellular potassium release, physicochemical surface properties and surface charge. The minimum inhibitory concentration (MIC) of AITC and PEITC was 100 μg/mL for all bacteria. The minimum bactericidal concentration (MBC) of the ITCs was at least 10 times higher than the MIC. Both AITC and PEITC changed the membrane properties of the bacteria decreasing their surface charge and compromising the integrity of the cytoplasmatic membrane with consequent potassium leakage and propidium iodide uptake. The surface hydrophobicity was also non-specifically altered (E. coli and L. monocytogenes become less hydrophilic; P. aeruginosa and S. aureus become more hydrophilic). This study shows that AITC and PEITC have strong antimicrobial potential against the bacteria tested, through the disruption of the bacterial cell membranes. Moreover, phytochemicals are highlighted as a valuable sustainable source of new bioactive products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu AC, McBain AJ, Simões M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29(9):1007–1021

    Article  CAS  Google Scholar 

  • Abreu AC, Borges A, Simões LC, Saavedra MJ, Simões M (2013) Antibacterial activity of phenyl isothiocyanate on Escherichia coli and Staphylococcus aureus. Med Chem 9(5):756–761

    Article  CAS  Google Scholar 

  • Ahimou F, Denis FA, Touhami A, Dufrêne YF (2002) Probing microbial cell surface charges by atomic force microscopy. Langmuir 18(25):9937–9941

    Article  CAS  Google Scholar 

  • Ahn ES, Kim YS, Shin DH (2001) Observation of bactericidal effect of allyl isothiocyanate on Listeria monocytogenes. Food Sci Biotechnol 10:31–35

    Google Scholar 

  • Aires A, Mota VR, Saavedra MJ, Monteiro AA, Simões M, Rosa EAS, Bennett RN (2009a) Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J Appl Microbiol 106(6):2096–2105

    Article  CAS  Google Scholar 

  • Aires A, Mota VR, Saavedra MJ, Rosa EAS, Bennett RN (2009b) The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J Appl Microbiol 106(6):2086–2095

    Article  CAS  Google Scholar 

  • Al-Gendy AA, El-gindi OD, Hafez AS, Ateya AM (2010) Glucosinolates, volatile constituents and biological activities of Erysimum corinthium Boiss. (Brassicaceae). Food Chem 118(3):519–524

    Article  CAS  Google Scholar 

  • Ananou S, Valdivia E, Martínez Bueno M, Gálvez A, Maqueda M (2004) Effect of combined physico-chemical preservatives on enterocin AS-48 activity against the enterotoxigenic Staphylococcus aurus CECT 976 strain. J Appl Microbiol 97(1):48–56

    Article  CAS  Google Scholar 

  • Barbieri G, Pernice R, Maggio A, De Pascale S, Fogliano V (2008) Glucosinolates profile of Brassica rapa L. subsp. Sylvestris L. Janch. var. esculenta Hort. Food Chem 107(4):1687–1691

    Article  CAS  Google Scholar 

  • Black MT, Hodgson J (2005) Novel target sites in bacteria for overcoming antibiotic resistance. Adv Drug Deliv Rev 57(10):1528–1538

    Article  CAS  Google Scholar 

  • Borges A, Saavedra MJ, Simões M (2012) The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28(7):755–767

    Article  CAS  Google Scholar 

  • Borges A, Ferreira C, Saavedra MJ, Simões M (2013) Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 19(4):256–265

    Article  CAS  Google Scholar 

  • Borges A, Simões LC, Saavedra MJ, Simões M (2014a) The action of selected isothiocyanates on bacterial biofilm prevention and control. Int Biodeterior Biodegrad 86, Part A(0):25–33

    Article  Google Scholar 

  • Borges A, Serra S, Abreu AC, Saavedra MJ, Salgado A, Simões M (2014b) Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity. Biofouling 30(2):183–195

    Article  CAS  Google Scholar 

  • Bos MP, Robert V, Tommassen J (2007) Biogenesis of the Gram-negative bacterial outer membrane. Ann Rev Microbiol 61(1):191–214

    Article  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods - a review. Int J Food Microbiol 94(3):223–253

    Article  CAS  Google Scholar 

  • Busscher HJ, Weerkamp AH, Van Der Mei HC (1984) Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 48(5):980–983

    CAS  Google Scholar 

  • Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46(6):1914–1920

    Article  CAS  Google Scholar 

  • Cartea M, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7(2):213–229

    Article  CAS  Google Scholar 

  • Cejpek K, Valusek J, Velisek J (2000) Reactions of allyl isothiocyanate with alanine, glycine, and several peptides in model systems. J Agric Food Chem 48(8):3560–3565

    Article  CAS  Google Scholar 

  • Chen H, Wang C, Ye J, Zhou H, Chen X (2012) Antimicrobial activities of phenethyl isothiocyanate isolated from horseradish. Nat Prod Res 26(11):1016–1021

    Article  CAS  Google Scholar 

  • Chorianopoulos NG, Tsoukleris DS, Panagou EZ, Falaras P, Nychas GJE (2011) Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiol 28(1):164–170

    Article  CAS  Google Scholar 

  • Cohen GN (2011) The outer membrane of Gram-negative bacteria and the cytoplasmic membrane. In: Microbial biochemistry. Springer Netherlands, pp 11–16. doi:10.1007/978-90-481-9437-7_2

  • Conrad A, Biehler D, Nobis T, Richter H, Engels I, Biehler K, Frank U (2013) Broad spectrum antibacterial activity of a mixture of isothiocyanates from nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix). Drug Res 63(1):65–68

    CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411(6839):826–833

    Article  CAS  Google Scholar 

  • D’Antuono LF, Elementi S, Neri R (2009) Exploring new potential health-promoting vegetables: glucosinolates and sensory attributes of rocket salads and related Diplotaxis and Eruca species. J Sci Food Agric 89(4):713–722

    Article  Google Scholar 

  • Delaquis PJ, Mazza G (1995) Antimicrobial properties of isothiocyanates in food preservation. Food Technol 49(11):73–84

    CAS  Google Scholar 

  • Diab Y, Atalla K, Elbanna K (2012) Antimicrobial screening of some Egyptian plants and active flavones from Lagerstroemi indica leaves. Drug Discov Ther 64(4):212–217

    Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411(6839):843–847

    Article  CAS  Google Scholar 

  • Dufour V, Alazzam B, Thepaut M, Ermel G, Baysse C (2012) Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates. Front Cell Infect Microbiol 2:1–13

    Article  Google Scholar 

  • EFSA (2010) Panel on Food Additives and Nutrient Sources added to Food (ANS). Scientific opinion on the safety of allyl isothiocyanate for the proposed uses as a food additive. EFSA J 8(12):1943–1983

    Google Scholar 

  • European standard EN 13697 (2001) Chemical disinfectants and antiseptics-Quantitative non-porous surface test for evaluation of bactericidal and/or fungicidal activity of chemical disinfectants used in food, industrial, domestic and institutional areas - Test method and requirements without mechanical action (phase 2, step 1)

  • European Standard EN-1276 (1997) Chemical disinfectants and antiseptics-Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic, and institutional areas-Test method and requirements (phase 2, step 1)

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51

    Article  CAS  Google Scholar 

  • Ferreira C, Pereira AM, Pereira MC, Melo LF, Simões M (2011) Physiological changes induced by the quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas fluorescens. J Antimicrob Chemother 66(5):1036–1043

    Article  CAS  Google Scholar 

  • Gilbert P, Evans DJ, Evans E, Duguid IG, Brown MRW (1991) Surface characteristics and adhesion of Escherichia coli and Staphylococcus epidermidis. J Appl Bacteriol 71(1):72–77

    CAS  Google Scholar 

  • Gómez De Saravia SG, Gaylarde CC (1998) The antimicrobial activity of an aqueous extract of Brassica negra. Int Biodeterior Biodegradation 41(2):145–148

    Article  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11(2):89–100

    Article  CAS  Google Scholar 

  • Halkier BA, Du L (1997) The biosynthesis of glucosinolates. Trends Plant Sci 2(11):425–431

    Article  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  • Heidler J, Sapkota A, Halden RU (2006) Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment. Environ Sci Technol 40(11):3634–3639

    Article  CAS  Google Scholar 

  • Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21(3):425–447

    Article  CAS  Google Scholar 

  • Hong E, Kim GH (2008) Anticancer and antimicrobial activities of β-phenylethyl isothiocyanate in Brassica rapa L. Food Sci Technol Res 14(4):377–382

    Article  CAS  Google Scholar 

  • Jacob C, Anwar A (2008) The chemistry behind redox regulation with a focus on sulphur redox systems. Physiol Plant 133(3):469–480

    Article  CAS  Google Scholar 

  • Janczuk B, Chibowski E, Bruque JM, Kerkeb ML, Caballero FG (1993) On the consistency of surface free energy components as calculated from contact angles of different liquids: an application to the cholesterol surface. J Colloid Interface Sci 159(2):421–428

    Article  CAS  Google Scholar 

  • Jang M, Hong E, Kim GH (2010) Evaluation of antibacterial activity of 3-butenyl, 4-pentenyl, 2-phenylethyl, and benzyl isothiocyanate in Brassica vegetables. J Food Sci 75(7):M412–M416

    Article  CAS  Google Scholar 

  • Jones RN, Stilwell MG (2013) Comprehensive update of dalbavancin activity when tested against uncommonly isolated streptococci, Corynebacterium spp., Listeria monocytogenes, and Micrococcus spp. (1357 strains). Diagn Microbiol Infect Dis 76(2):239–240

    Article  CAS  Google Scholar 

  • Kim MG, Lee HS (2009) Growth-inhibiting activities of phenethyl isothiocyanate and its derivatives against intestinal bacteria. J Food Sci 74(8):M467–M471

    Article  CAS  Google Scholar 

  • Kolm RH, Danielson UH, Zhang Y, Talalay P, Mannervik B (1995) Isothiocyanates as substrates for human glutathione transferases: structure-activity studies. Biochem J 311(2):453–459

    CAS  Google Scholar 

  • Kyung KH, Fleming HP (1997) Antimicrobial activity of sulfur compounds derived from cabbage. J Food Prot 60(1):67–71

    CAS  Google Scholar 

  • Lambert PA, Hammond SM (1973) Potassium fluxes, first indications of membrane damage in micro organisms. Biochem Biophys Res Commun 54(2):796–799

    Article  CAS  Google Scholar 

  • Langsrud S, Sidhu MS, Heir E, Holck AL (2003) Bacterial disinfectant resistance - a challenge for the food industry. Int Biodeterior Biodegradation 51(4):283–290

    Article  CAS  Google Scholar 

  • Lerebour G, Cupferman S, Bellon-Fontaine MN (2004) Adhesion of Staphylococcus aureus and Staphylococcus epidermidis to the Episkin® reconstructed epidermis model and to an inert 304 stainless steel substrate. J Appl Microbiol 97(1):7–16

    Article  CAS  Google Scholar 

  • Lin CM, Kim J, Du WX, Wei CI (2000a) Bactericidal activity of isothiocyanate against pathogens on fresh producer. J Food Prot 63(1):25–30

    CAS  Google Scholar 

  • Lin CM, Preston Iii JF, Wei CI (2000b) Antibacterial mechanism of allyl isothiocyanate. J Food Prot 63(6):727–734

    CAS  Google Scholar 

  • Liu T-T, Yang T-S (2010) Stability and antimicrobial activity of allyl isothiocyanate during long-term storage in an oil-in-water emulsion. J Food Sci 75(5):C445–C451

    Article  CAS  Google Scholar 

  • Luciano FB, Holley RA (2009) Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli O157:H7. Int J Food Microbiol 131(2–3):240–245

    Article  CAS  Google Scholar 

  • Luciano FB, Hosseinian FS, Beta T, Holley RA (2008) Effect of free-SH containing compounds on allyl isothiocyanate antimicrobial activity against Escherichia coli O157:H7. J Food Sci 73(5):M214–M220

    Article  CAS  Google Scholar 

  • Masuda H, Harada Y, Kishimoto N, Tano T (2001) Antimicrobial activities of isothiocyanates. 794

  • McCabe-Sellers BJ, Beattie SE (2004) Food safety: emerging trends in foodborne illness surveillance and prevention. J Acad Nutr Diet 104(11):1708–1717

    Google Scholar 

  • Munday R, Mhawech-Fauceglia P, Munday CM, Paonessa JD, Tang L, Munday JS, Lister C, Wilson P, Fahey JW, Davis W, Zhang Y (2008) Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res 68(5):1593–1600

    Article  CAS  Google Scholar 

  • Mushantaf F, Blyth J, Templeton MR (2012) The bactericidal effects of allyl isothiocyanate in water. Environ Technol 33(21):2461–2465

    Article  CAS  Google Scholar 

  • Negi PS (2012) Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol 156(1):7–17

    Article  Google Scholar 

  • Oussalah M, Caillet S, Saucier L, Lacroix M (2007) Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18(5):414–420

    Article  CAS  Google Scholar 

  • Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34(9):577–588

    Article  CAS  Google Scholar 

  • Pang Y-H, Sheen S, Zhou S, Liu L, Yam KL (2013) Antimicrobial effects of allyl isothiocyanate and modified atmosphere on Pseduomonas aeruginosa in fresh catfish fillet under abuse temperatures. J Food Sci 78(4):M555–M559

    Article  CAS  Google Scholar 

  • Park CM, Taormina PJ, Beuchat LR (2000) Efficacy of allyl isothiocyanate in killing enterohemorrhagic Escherichia coli O157:H7 on alfalfa seeds. Int J Food Microbiol 56(1):13–20

    Article  CAS  Google Scholar 

  • Rahman A, Kang SC (2009) Inhibition of foodborne pathogens and spoiling bacteria by essential oil and extracts of Erigeron ramosus (Walt.) B.S.P. J Food Safety 29(2):176–189

    Article  Google Scholar 

  • Rhee MS, Lee SY, Dougherty RH, Kang DH (2003) Antimicrobial effects of mustard flour and acetic acid against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 69(5):2959–2963

    Article  CAS  Google Scholar 

  • Russell AD (2000) Do biocides select for antibiotic resistance? J Pharm Pharmacol 52(2):227–233

    Article  CAS  Google Scholar 

  • Russell AD (2003) Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis 3(12):794–803

    Article  CAS  Google Scholar 

  • Saavedra MJ, Borges A, Dias C, Aires A, Bennett RN, Rosa ES, Simões M (2010) Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria. Med Chem 6(3):174–183

    Article  CAS  Google Scholar 

  • Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, Jabbar A (2010) Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 27(2):238–254

    Article  CAS  Google Scholar 

  • Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321–324

    Article  CAS  Google Scholar 

  • Shin IS, Masuda H, Naohide K (2004) Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori. Int J Food Microbiol 94(3):255–261

    Article  Google Scholar 

  • Simões M, Pereira MO, Vieira MJ (2005) Validation of respirometry as a short-term method to assess the efficacy of biocides. Biofouling 21(1):9–17

    Article  Google Scholar 

  • Simões M, Simões LC, Cleto S, Machado I, Pereira MO, Vieira MJ (2007) Antimicrobial mechanisms of ortho-phthalaldehyde action. J Basic Microbiol 47(3):230–242

    Article  Google Scholar 

  • Simões M, Rocha S, Coimbra MA, Vieira MJ (2008) Enhancement of Escherichia coli and Staphylococcus aureus antibiotic susceptibility using sesquiterpenoids. Med Chem 4(6):616–623

    Article  Google Scholar 

  • Simões M, Bennett RN, Rosa EA (2009) Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 26(6):746–757

    Article  Google Scholar 

  • Sofrata A, Santangelo EM, Azeem M, Borg-Karlson AK, Gustafsson A, Pütsep K (2011) Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria. PLoS One 6(8):1–10

    Article  Google Scholar 

  • Sun B, Liu N, Zhao Y, Yan H, Wang Q (2011) Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem 124(3):941–947

    Article  CAS  Google Scholar 

  • Tabata A, Magamune H, Maeda T, Murakami K, Miyake Y, Kourai H (2003) Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR. Antimicrob Agents Chemother 47(7):2093–2099

    Article  CAS  Google Scholar 

  • Tajima H, Kimoto H, Taketo Y, Taketo A (1998) Effects of synthetic hydroxy isothiocyanates on microbial systems. Biosci Biotechnol Biochem 62(3):491–495

    Article  CAS  Google Scholar 

  • Tang L, Zhang Y (2005) Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Mol Cancer Ther 4(8):1250–1259

    Article  CAS  Google Scholar 

  • Tegos G, Stermitz FR, Lomovskaya O, Lewis K (2002) Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother 46(10):3133–3141

    Article  CAS  Google Scholar 

  • Tiwari BK, Valdramidis VP, O’ Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57(14):5987–6000

    Article  CAS  Google Scholar 

  • Troncoso R, Espinoza C, Sánchez-Estrada A, Tiznado ME, García HS (2005) Analysis of the isothiocyanates present in cabbage leaves extract and their potential application to control Alternaria rot in bell peppers. Food Res Int 38(6):701–708

    Article  CAS  Google Scholar 

  • UNE-CEN ISO/TS 11133–2 (2006) Microbiology of food and animal feeding stuffs - Guidelines on preparation and production of culture media - Part 2: Practical guidelines on performance testing of culture media

  • van Oss CJ, Chaudhury MK, Good RJ (1987) Monopolar surfaces. Adv Colloid Interface Sci 28(C):35–64

    Google Scholar 

  • van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4(4):884–891

    Article  Google Scholar 

  • van Oss CJ, Ju L, Chaudhury MK, Good RJ (1989) Estimation of the polar parameters of the surface tension of liquids by contact angle measurements on gels. J Colloid Interface Sci 128(2):313–319

    Article  Google Scholar 

  • Verma RP (2003) Synthesis and reactions of 3-oxobutyl isothiocyanate (OB ITC). Eur J Org Chem 2003(3):415–420

    Article  Google Scholar 

  • Wang SY, Chen CT, Yin JJ (2010) Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chem 120(1):199–204

    Article  CAS  Google Scholar 

  • Wu C, Spongberg AL, Witter JD, Fang M, Czajkowski KP (2010) Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water. Environ Sci Technol 44(16):6157–6161

    Article  CAS  Google Scholar 

  • Zhang Y (2012) The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Carcinogenesis 33(1):2–9

    Article  Google Scholar 

  • Zsolnai T (1966) The antimicrobial activity of thiocyanates and isothiocyantes. Drug Res (Stuttg) 16(7):870–876

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Operational Programme for Competitiveness Factors – COMPETE and by the Portuguese Foundation for Science and Technology through Project Phytodisinfectants - PTDC/DTP-SAP/1078/2012 (COMPETE: FCOMP-01-0124-FEDER-028765), the PhD grant awarded to Ana Abreu (SFRH/BD/84393/2012), and the post-doctoral grants awarded to Anabela Borges (SFRH/BPD/98684/2013) and Lúcia C. Simões (SFRH/BPD/81982/2011). Also, this work was undertaken as part of the European Research Project SUSCLEAN (Contract nº FP7-KBBE-2011-5, project number: 287514) and the COST Action FA1202. The authors are solely responsible for this work. It does not represent the opinion of the European Community, and the Community is not responsible for any use that might be made of data appearing herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Simões.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, A., Abreu, A.C., Ferreira, C. et al. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J Food Sci Technol 52, 4737–4748 (2015). https://doi.org/10.1007/s13197-014-1533-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1533-1

Keywords

Navigation