Skip to main content
Log in

Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta)

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Sorption isotherms of cassava were determined experimentally using a static gravimetric method at 30, 45 and 60 °C and within the range of 0.10–0.90 water activity. At a constant water activity, equilibrium moisture content decreased with increasing temperature. The equilibrium moisture content increased with increasing water activity at a given temperature. The experimental results were modelled using seven sorption models using non-linear regression technique. Results demonstrated that the GAB model adequately predicted equilibrium moisture content of cassava for the range of temperatures and water activities studied. The thermodynamic functions such as net isosteric heat of sorption, differential entropy of sorption, net integral enthalpy and entropy were evaluated to provide an understanding of the properties of water and energy requirements associated with the sorption behaviour. Net isosteric heat and differential entropy decreased with increasing equilibrium moisture content. The net integral enthalpy decreased while net integral entropy increased with increasing equilibrium moisture content. Net integral entropy was negative in value. All thermodynamic functions were adequately characterised by a power law model. The point of maximum stability was found between 0.053 and 0.154 kg water/kg db for cassava.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adebowale AR, Sanni I, Awonorin S, Daniel I, Kuye A (2007) Effect of cassava varieties on the sorption isotherm of tapioca grits. Inter J Food Sci Technol 42:448–452

    Article  CAS  Google Scholar 

  • Aguerre RJ, Suarez C, Viollaz PE (1989) Swelling and pore structure in starch materials. J Food Eng 9:71–80

    Article  Google Scholar 

  • Ahouannou C, Jannot Y, Lips B, Lallemand A (2000) Caractérisation et modélisation du séchage de trois produits tropicaux: manioc, gingembre et gombo. Sci Aliments 20:413–432

    Article  Google Scholar 

  • Al-Muhtaseb AH, McMinn WAM, Magee TRA (2004) Water sorption isotherms of starch powders. Part I: Mathematical description of experimental data. J Food Eng 61:297–307

    Article  Google Scholar 

  • Arora S, Shivhare US, Ahmed J, Raghavan GSV (2003) Drying kinetics of agaricus bisporus and pleurotus florida mushrooms. Trans ASAE 46(3):721–724

    Google Scholar 

  • ASAE D245.5 (1997) Moisture relationship of plant-Based Agricultural products. ASAE Standards 44th Eds., Michigan, USA. St Joseph

  • Aviara NA, Ajibola OO (2002) Thermodynamics of moisture sorption of melon seed and cassava. J Food Eng 55:107–113

    Article  Google Scholar 

  • Aviara NA, Ajibola OO, Dairo UO (2002) Thermodynamics of moisture sorption in sesame seed. Biosystems Eng 83:423–431

    Article  Google Scholar 

  • Aviara NA, Ajibola OO, Oni SA (2004) Sorption equilibrium and thermodynamic characteristics of soya bean. Biosystems Eng 87(2):179–190

    Article  Google Scholar 

  • Ayranci E (1995) Equilibrium moisture characteristics of dried eggplant and okra. Food/ Nahrung 39(3):228–233

    Article  Google Scholar 

  • Ayranci E, Duman O (2005) Moisture sorption isotherms of cowpea (Vigna unguiculata L. Walp) and its protein isolate at 10, 20 and 30 °C. J Food Eng 70:83–91

    Article  Google Scholar 

  • Basu S, Shivhare US, Mujumdar AS (2006) Models for sorption isotherms for foods: a review. Dry Technol 24(8):917–930

    Article  Google Scholar 

  • Bellagha S, Sahli A, Glenza A, Kechou N (2005) Isohalic sorption isotherm of sardine (Sardinella aurita): experimental determination and modeling. J Food Eng 68:105–111

    Article  Google Scholar 

  • Beristain CI, Azuara E, Vernon-Carter EJ (2002) Effect of water activity on the stability to oxidation of spray-dried encapsulated orange peel oil using mesquite gum (Prosopis juliflora) as wall material. J Food Sci 67:206–211

    Article  CAS  Google Scholar 

  • Bizot H (1983) Using the GAB model to construct sorption isotherms. In: Jowitt et al (eds) Physical properties of foods. Applied Science, London, pp 43–54

  • Boquet R, Chirife J, Iglesias HA (1978) Equations for fitting water sorption isotherms of foods. II- Evaluation of various two-parameter models. J Food Technol 13:319–327

    Article  Google Scholar 

  • Brett B, Figueroa M, Sandoval AJ, Barreiro JA (2009) Moisture sorption characteristics of starchy products: oat flour and rice flour. Food Biophys 4:151–157

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layer. J Am Chem Soc 60(2):309–319

    Google Scholar 

  • Calzetta Resio AN, Tolaba MP, Suarez C (2000) Some physical and thermal characteristics of amaranth starch. Food Sci Technol Int 6:371–378

    Article  Google Scholar 

  • Cassini AS, Marczak LDF, Norena CPZ (2006) Water adsorption isotherms of texturized soy protein. J Food Eng 77:194–199

    Article  CAS  Google Scholar 

  • Chen C, Weng Y-K (2010) Moisture sorption isotherms of Oolong tea. Food Bioprocess Technol 3(2):226–233

    Article  Google Scholar 

  • Chenlo F, Moreira R, Prieto DM, Torres MD (2011) Desorption isotherms and net isosteric heat of chestnut flour and starch. Food Bioprocess Technol 4(8):1497–1504

    Article  Google Scholar 

  • Delgado AE, Sun D-W (2002) Desorption isotherms for cooked and cured beef and pork. J Food Eng 51:163–170

    Article  Google Scholar 

  • Fasina O, Ajibola OO, Tyler R (1999) Thermodynamic of moisture sorption in winged bean seed and gari. J Food Process Eng 22:405–418

    Article  Google Scholar 

  • Gal S (1975) Recent advances in techniques for the determination of sorption isotherms. In: Duckworth RB (ed) Water relations of foods. Academic, London, pp 139–155

    Chapter  Google Scholar 

  • Gal S (1987) The need for, and practical applications of sorption data. In: Jowitt R, Escher F, Hallström B, Mefert H, Spiess W, Vos G (eds) Physical properties of foods-2. Elsevier Applied Science, London, pp 13–25

    Google Scholar 

  • Garcia-Pérez JV, Carcel JA, Clemente G, Mulet A (2008) Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT- Food Sci Technol 41(1):18–25

    Article  Google Scholar 

  • Hasley G (1948) Physical adsorption in non-uniform surfaces. J Chem Phys 16:931–945

    Article  Google Scholar 

  • Iglesias HA, Chirife J (1976) Local isotherm concept and modes of moisture binding in food products. J Agric Food Chem 24(1):77–79

    Article  CAS  Google Scholar 

  • Iglesias HA, Chirife J (1981) An equation for fitting uncommon water sorption isotherms in foods. LWT 14:111–117

    Google Scholar 

  • Iglesias HA, Chirife J (1982) Handbook of food isotherms water sorption. Parameters for food and food components. Academic, New York

    Google Scholar 

  • Iglesias HA, Chirife J, Viollaz P (1976) Thermodynamics of water vapour sorption by sugar beet root. J Food Technol 11:91–101

    Article  CAS  Google Scholar 

  • Iglesias HA, Chirife J, Ferro Fontan C (1989) On the temperature dependence of isosteric heats of water sorption in dehydrated foods. J Food Sci 54(6):1620–1631

    Article  CAS  Google Scholar 

  • Jagadish RS, Rastogi NK, Raj B (2010) Moisture sorption characteristics of chitosan /polyethylene oxide blended films. J Polym Environ 18(3):266–276

    Article  CAS  Google Scholar 

  • Jain SK, Veima RC, Sharma GP, Jain HK (2010) Studies on moisture sorption isotherms for osmotically dehydrated papaya cubes and verification of selected models. J Food SciTechnol 47(3):343–346

    CAS  Google Scholar 

  • Jamali A, Kouhila M, Mohamed IA, Idliman A, Lamharrar A (2006) Moisture adsorption-desorption isotherms of citrus reticulate leaves at three temperatures. J Food Eng 77:71–78

    Article  Google Scholar 

  • Johnson P-NT, Brennan JG (2000) Moisture sorption isotherm characteristics of plantain (Musa, AAB). J Food Eng 44:79–84

    Article  Google Scholar 

  • Kaleemullah S, Kallappan R (2004) Moisture sorption isotherms of red chillies. Biosystems Eng 88(1):95–104

    Article  Google Scholar 

  • Kaur D, Wani AA, Sogi DS, Shivhare US (2006) Sorption isotherms and drying characteristics of tomato peel isolated from tomato pomace. Dry Technol 24(11):1515–1520

    Article  CAS  Google Scholar 

  • Kaya A, Aydin O (2009) An experimental study on drying kinetics of some herbal leaves. Energy Convers Manag 50:118–124

    Article  CAS  Google Scholar 

  • Kaya S, Kahyaoglu T (2007) Moisture sorption and thermodynamic properties of safflower petals and tarragon. J Food Eng 78:413–421

    Article  Google Scholar 

  • Kaymak-Ertekin F, Gedik A (2004) Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT- Food Sci Technol 37:429–438

    Article  CAS  Google Scholar 

  • Kiranoudis CT, Maroulis ZB, Tsami E, Marinos-Kouris D (1993) Equilibrium moisture content and heat of desorption of some vegetables. J Food Eng 20:55–74

    Article  Google Scholar 

  • Kouhila M, Belghit A, Daguenet M, Boutaleb BC (2001) Experimental determination of the sorption isotherms of mint (Mentha viridis), sage (Salvia officinalis) and verbena (Lippia citriodara). J Food Eng 47:281–287

    Article  Google Scholar 

  • Krug RR, Hunter WG, Grieger RA (1976a) Enthalpy-entropy compensation. 1- some fundamental statistical problems associated with the analysis of Van’t Hoff and Arrhenius data. J Physl Chem 80:2335–2341

    Article  CAS  Google Scholar 

  • Krug RR, Hunter WG, Grieger RA (1976b) Enthalpy-entropy compensation. 2- Separation of the chemical from the statistical effect. J Phys Chem 80:2341–2351

    Article  CAS  Google Scholar 

  • Kuhn I (1967) Generalized potential theory of adsorption: I. The derivation of a general equation for adsorption. J Colloid Interface Sci 23:563

    Article  CAS  Google Scholar 

  • Lahsani S, Kouhila M, Mahrouz M, Fliyou M (2003) Moisture adsorption-desorption isotherms of prickly pear cladode (Opuntia ficus India) at different temperatures. Energy Convers Manag 44:923–936

    Article  Google Scholar 

  • Lomauro CJ, Bakshi AS, Labuza TP (1985) Evaluation of Food moisture sorption isotherm equations. Part I- Fruit, vegetable and meat products. LWT- Food Sci Technol 18:111–117

    Google Scholar 

  • Madamba PS, Driscoll RH, Buckle KA (1996) Enthalpy-entropy compensation models for sorption and browning of garlic. J Food Eng 28:109–119

    Article  Google Scholar 

  • Mazza G, LeMaguer M (1980) Dehydration of onion: some theoretical and practical considerations. J Food Technol 15(2):181–194

    Google Scholar 

  • McMinn WAM, Magee TRA (1999) Studies on the effect of temperature on the moisture sorption characteristics of potatoes. J Food Process Eng 22:113–128

    Article  Google Scholar 

  • McMinn WAM, Magee TRA (2003) Thermodynamic properties of moisture sorption of potato. J Food Eng 60:157–165

    Article  Google Scholar 

  • Mir MA, Nath N (1995) Sorption isotherms of fortified mango bars. J Food Eng 25:141–150

    Article  Google Scholar 

  • Mohsenin N (1986) Physical properties of plant and animal materials. Gordon & Breach, New York

    Google Scholar 

  • Mwithiga G, Olwal JO (2005) The drying kinetics of kale (Brassica oleracea) in a convective hot air dryer. J Food Eng 71:373–378

    Article  Google Scholar 

  • Myhara R-M, Taylor MS, Slominski BA, Al-Bulushi I (1998) Moisture sorption isotherms and chemical composition of omani dates. J Food Eng 37:471–479

    Article  Google Scholar 

  • Olufayo AA, Ogunkunle OJ (1996) National drying of cassava chips in the humid zone of Nigeria. Bioresour Technol 58:89–91

    Article  CAS  Google Scholar 

  • Oswin CR (1946) The kinetics of package life. III- The isotherm. J Chem Ind 65:419–421

    Article  CAS  Google Scholar 

  • Palipane KB, Driscoll RH (1992) Moisture sorption characteristics of in-shell macadamia nuts. J Food Eng 18:63–76

    Article  Google Scholar 

  • Palou E, Lopez-Malo A, Argaiz A (1997) Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks. J Food Eng 31:85–93

    Article  Google Scholar 

  • Pérez-Alonzo C, Beristain CI, Lobato-Calleros C, Rodriguez-Huezo ME, Vernon-Carter EJ (2006) Thermodynamic analysis of the sorption isotherms of pure and blended carbohydrate polymers. J Food Eng 77:753–760

    Article  Google Scholar 

  • Rizvi SSH (1986) Thermodynamic properties of food in dehydration. In: Rao MA, Rizvi SSH (eds) Engineering properties of foods. Marcel Dekker, New York, pp 133–214

  • Rosa GS, Moraes MA, Pinto LAA (2010) Moisture sorption properties of chitosan. LWT- Food Sci Technol 43:415–420

    Article  CAS  Google Scholar 

  • Samapundo S, Devlieghere F, De Meulenaer B, Atukwase A, Lamboni Y, Debevere JM (2007) Sorption isotherms and isosteric heats of sorption of whole yellow dent corn. J Food Eng 79:168–175

    Article  Google Scholar 

  • Shafiq Alam Md, Singh A (2011) Sorption isotherm characteristics of aonla flakes. J Food Sci Technol 48(3):335–343

    Article  Google Scholar 

  • Shivhare US, Gupta A, Bawa AS, Gupta P (2000) Drying characteristics and product quality of okra. Dry Technol 18(1&2):409–419

    Article  Google Scholar 

  • Singh KP, Mishra HN, Saha S (2011) Sorption isotherms of barnyard millet grain and kernel. Food Bioprocess Technol 4(5):788–796

    Article  Google Scholar 

  • Skaar C, Babiak M (1982) A model for bound water transport in wood. Wood Sci Technol 16:123–138

    Article  CAS  Google Scholar 

  • Smith SE (1947) The sorption of water vapour by high polymers. J Am Chem Soc 69:646–651

    Article  CAS  Google Scholar 

  • Smith JM, Van Ness HC, Abbot MM (2001) Introduction to chemical engineering thermodynamics. McGraw-Hill, Boston

    Google Scholar 

  • Talla A, Jannot Y, Kapseu C, Nganhou J (2001) Experimental study and modelling of the kinetics of drying of tropical fruits. Application to banana and mango. Sci Aliments 21:499–518

    Article  Google Scholar 

  • Talla A, Jannot Y, Nkeng GE, Puiggali J-R (2005) Experimental determination and modelling of sorption isotherms of tropical fruits: banana, mango and pineapple. Dry Technol 23:1477–1498

    Article  CAS  Google Scholar 

  • Togrul H, Arslan N (2006) Moisture sorption behaviour and thermodynamic characteristics of rice stored in a chamber under controlled humidity. Biosystems Eng 95(2):181–195

    Article  Google Scholar 

  • Togrul H, Arslan N (2007) Moisture sorption isotherms and thermodynamic properties of walnut kermels. J Stored Prod Res 45:252–264

    Article  Google Scholar 

  • Tsami E, Maroulis ZB, Marinos-Kouris D, Saravacos GD (1990) Heat of sorption of water in dried fruits. Int J Food Sci Technol 25:350–359

    Article  CAS  Google Scholar 

  • Tsami E, Krokida MK, Drouzas AE (1999) Effect of drying on the sorption characteristics of model fruit powders. J Food Eng 38:381–392

    Article  Google Scholar 

  • Van den Berg C, Bruin S (1981) Water activity and its estimation in food systems: theoretical aspects. In: Rockland LB, Stewart GF (eds) Water activity: influences on food quality. Academic, New York, pp 147–177

    Google Scholar 

  • Vishwakarma RK, Goyal RK, Bhargav VK (2007) Moisture sorption isotherms of pigeonpea (Cajanas Cajan) grain and its dehulled splits (Dhal). Am J Food Technol 2(4):228–237

    Article  Google Scholar 

  • Vishwakarma RK, Shivhare US, Nanda SK (2011) Moisture adsorption isotherms of guar (cyamposis tetragonoloba) grain and guar gum splits. LWT- Food Sci Technol 44(4):969–975

    Article  CAS  Google Scholar 

  • Wang N, Brennan JG (1991) Moisture sorption isotherm characteristics of potatoes at four temperatures. J Food Eng 14:269–287

    Article  Google Scholar 

  • Wolf W, Spiess WEL, Jung G (1985) Properties of water in foods in relation to food quality and stability. In: Stimatos D, Multon JL (eds) Standardization of isotherm measurement. Martinus Nijhoff Publishers, Dordrecht, pp 661–679

    Google Scholar 

  • Yazdani M, Sazandehchi P, Azizi M, Ghobadi P (2006) Moisture sorption isotherms and isosteric heat for pistachio. Eur Food Res Technol 223(5):577–584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Kamenan Koua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koua, B.K., Koffi, P.M.E., Gbaha, P. et al. Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta) . J Food Sci Technol 51, 1711–1723 (2014). https://doi.org/10.1007/s13197-012-0687-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-012-0687-y

Keywords

Navigation