Skip to main content
Log in

Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent of a confectionery industry

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris have gained considerable importance in recent decades. C. vulgaris strain highly tolerant to extreme pH variations was isolated and mass-cultivated in the wastewater from a confectionery industry. C.vulgaris showed better growth in wastewater than in improvised CFTRI medium. The microalgal biomass was then screened for the following antioxidants: peroxidase, superoxide dismutase, polyphenol oxidase, glutathione peroxidase, chlorophyll a, ascorbic acid, α-tocopherol and reduced glutathione. The total polyphenol content of the strain was also studied. The strain showed a high degree of enzymatic antioxidant activity (0.195 × 10−5 ± 0.0072 units/cell peroxidase, 0.04125 × 10−5 ± 0.001 units/cell superoxide dismutase, 0.2625 × 10−5 ± 0.003 units/cell polyphenol oxidase and 0.025 × 10−5 ± 0.003 glutathione peroxidase). The microalgal biomass also showed, per milligram weight, 0.2182 ± 0.005 μg of ascorbic acid, 0.00264 ± 0.001 μg of α-tocopherol and 0.07916 ± 0.004 μg of reduced glutathione. These results represent the possibility of using C. vulgaris grown in confectionery industry wastewater as a source of nutritious supplement, which is highly promising in terms of both economic and nutritional point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anbuselvam C, Vijayavel K, Balasubramanian MP (2007) Protective effect of Operculina turpethum against 7,12-dimethyl benz(a)anthracene induced oxidative stress with reference to breast cancer in experimental rats. Chem Biol Interact 168:229–236

    Article  CAS  Google Scholar 

  • Choudhary R, Saroha AE, Swarnkar PL (2011) Effect of abscisic acid and hydrogen peroxide on antioxidant enzymes in syzygium cumini plant. J Food Sci Tech. doi:10.1007/s13197-011-0464-3

  • Becker EW (1994) Microalgae. In: Baddiley SJ, Carey NH, Higgins IJ, Potter WG (eds) Biotechnology-Microbiology. Cambridge University Press, New York, pp 177–195

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  Google Scholar 

  • Borowitzka M (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15

    Article  CAS  Google Scholar 

  • Borowitzka MA (1999a) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA (1999b) Economic evaluation of microalgal processes and products. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 387–409

    Google Scholar 

  • Bo Shao H, Ye Chu L, Hua Lu Z, Min Kang C (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Google Scholar 

  • Burguieres E, McCue P, Kwon YI, Shetty K (2007) Effect of vitamin C and folic acid on seed vigor response and phenolic-linked antioxidant activity. Bioresour Technol 98:1393–1404

    Article  CAS  Google Scholar 

  • Cornet JF, (1998) Le technoscope: les photobioréacteurs. Biofutur 176:1–10

    Google Scholar 

  • de-Bashan LE, Moreno M, Hernandez JP, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948

    Article  CAS  Google Scholar 

  • Esterbauer H, Schwarzl E, Hayn M (1977) A rapid assay for catechol oxidase and laccase using 2-nitro-5-thiobenzoic acid. Anal Biochem 77:486–494

    Article  CAS  Google Scholar 

  • Garcia O, De-bashan EL, Hernandez J, Bashan Y (2010) Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with azospirillum brasilense. J Appl Phycol 46:800–812

    Article  Google Scholar 

  • Gitta SJ, Donald I, Ginsberg MS, Christian Drapeau MS (2001) Blue-green algae as an immuno-enhancer and biomodulator. JANA 3:24–30

    Google Scholar 

  • Guil-Guerrero JL, Navarro-Juárez R, López-Martínez JC, Campra-Madrid P, Rebolloso-Fuentes MM (2004) Functionnal properties of the biomass of three microalgal species. J Agr Food Chem 65:511–517

    Google Scholar 

  • Han XU, Miao X, Qingyu W (2006) High quality biodisel production from a microalgae chlorella protothecoides by hetrotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  Google Scholar 

  • Hanumantha Rao P, Ranjith Kumar R, Raghavan BG, Subramanian VV, Sivasubramanian V (2011) Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water SA 37:7–14

    Google Scholar 

  • Herrero M, Jaime L, Martín-Álvarez PJ, Cifuentes A, Ibañez E (2006) Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J Agr Food Chem 54:5597–5603

    Article  CAS  Google Scholar 

  • Jaime L, Mendiola J, Herrero M, Soler-Rivas C, Santoyo S, Senorans F, Cifuentes A, Ibanez E (2005) Separation and characterization of antioxidants from Spirulinaplatensis microalga combining pressurized liquid extraction, TLC and HPLCDAD. J Sep Sci 28:2111–2119

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinksa B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  Google Scholar 

  • Komor E, Tanner W (1976) Glucose induces two amino acid transport systems in Chlorella. Eur J Biochem 70:197–204

    Article  CAS  Google Scholar 

  • Lamoureux G, Rusness D (1989) The role of glutathione and glutathione S-transferase in pesticide metabolism, selectivity, and mode of action in plants and insects. In: Poulson R, Avramovic O, Dolphin D (eds) Coenzymes and cofactors glutathione: chemical, biochemical, and medical aspects, part B. John Wiley and Sons, New York, pp 153–196

    Google Scholar 

  • Lei A, Hu Z, Wang Y, Tam NF (2006) Antioxidant responses of microalgae species to pyrene. J Appl Phycol 18:67–78

    Google Scholar 

  • Lewis N, Yamamoto E (1990) Lignin: Occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  CAS  Google Scholar 

  • Li H, Cheng K, Wong C, Fan K, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  • Li M, Hu C, Zhu Q (2006) Copper and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in the microalga Pavlova viridis (Prymnesiophyceae). Chemosphere 62:565–572

    Article  CAS  Google Scholar 

  • Lowry LH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Malik CP (1980) In: Singh MB (ed) Plant enzymology and histo-enzymology. Kalyani Publishers, New Delhi, pp 69–80

    Google Scholar 

  • Matsukawa R, Hotta M, Masuda Y, Chihara M, Karube I (2000) Antioxidants from carbon dioxide fixing Chlorella sorokiniana. J Appl Phycol 12:263–267

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  Google Scholar 

  • Moron M, Depierre J, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  Google Scholar 

  • Munoz R, Guieysee B (2006) Algal-bactrial processes for the treatment of hazardous contaminants: A review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Nocto G, Foyer C (1988) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  Google Scholar 

  • Nasirullah JT, Rakshitha D (2009) Isolation and antioxidant efficacy of nutraceutical concentrates from sesame and flax seed oils. J Food Sci Tech 46:66–69

    CAS  Google Scholar 

  • Philipose MT, ICAR Monograph (1967) Chlorococcales. Algae, New Delhi, p 365

    Google Scholar 

  • Pons A, Rola P, Agvilo C, Garcia FJ, Alemarry M, Paloo A (1981) A method for the simultaneous determination of total carbohydrate and glycerol in biological samples with the anthrone reagent. J Biochem Biophys Methods 4:227–231

    Article  CAS  Google Scholar 

  • Rao AR, Sarada R, Baskaran V, Ravishankar GA (2006) Antioxidant activity of Botryococcus braunii extract elucidated in vitro models. J Agr Food Chem 54:4593–4599

    Article  CAS  Google Scholar 

  • Reddy K, Subhani S, Khan P, Kumar K (1985) Effect of light and benzyladenine on dark treated growing rice (Oryza sativa) leaves II. Changes in peroxidase activity. Plant Cell Physiol 26:987–994

    CAS  Google Scholar 

  • Rodriguez-Garcia I, Guil-Guerrero JL (2008) Evaluation of the antioxidant activity of three microalgal species for use as dietary supplements and in the preservation of foods. Food Chem 108:1023–1026

    Article  CAS  Google Scholar 

  • Roe JH, Kuether CA (1943) The determination of ascorbic acid in whole blood and urine through 2, 4 - dinitrophenyl hydrazine derivative of Dehydroascorbic acid. J Biol Chem 147:399–407

    CAS  Google Scholar 

  • Rosenberg HR (1992) Chemistry and physiology of the vitamins. Interscience Publishers, New York, pp 452–453

    Google Scholar 

  • Rotruk JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoeckstra WG (1973) Selenium: Biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  Google Scholar 

  • Roy G, Sarma BK, Phadnis PP, Mugesh G (2005) Selenium-containing enzymes in mammals: Chemical perspectives. J Chem Sci 117:287–303

    Article  CAS  Google Scholar 

  • Sachindra NM, Airanthi MKWA, Hosokawa M, Miyashita K (2010) Radical scavenging and singlet oxygen quenching activity of extracts from Indian seaweeds. J Food Sci Tech 47(1):94–99

    Article  CAS  Google Scholar 

  • Santos I, Almeida J, Salema R (1999) The influence of UV-B radiation on the superoxide dismutase of maize potato sorghum and wheat leaves. Can J Bot 77:70–76

    CAS  Google Scholar 

  • Singh UAK, Singh S, Rai M (2009) Total phenolics content and free radical scavenging activity of brassica vegetables. J Food Sci Tech 46:595–597

    CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Takekoshi H, Suzuki G, Chubachi H, Nakano M (2005) Effect of Chlorella pyrenoidosa on facel extraction and liver accumulation of polychlorinated dibenzo-dioxin in mice. Chemosphere 59:297–304

    Article  CAS  Google Scholar 

  • Tsavalos AJ, Day JG (1994) Development of media for the mixotrophic/heterotrophic culture of Brachiomonas submarina. J Appl Phycol 6:431–433

    Article  Google Scholar 

  • Venkataraman LV, Becker EW (1985) Biotechnology & utilization of algae - The Indian experience. Sharada Press, Mangalore, pp 114–115

    Google Scholar 

  • Wu L, Ho JAA, Shieh M, Lu I (2005) Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. J Agr Food Chem 53:4207–4212

    Article  CAS  Google Scholar 

  • Yang C, Ding Z, Zhang K (2008) Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation. World J Microbiol Biotechnol 24:2919–2925

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ranjith Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R.R., Rao, P.H., Subramanian, V.V. et al. Enzymatic and non-enzymatic antioxidant potentials of Chlorella vulgaris grown in effluent of a confectionery industry. J Food Sci Technol 51, 322–328 (2014). https://doi.org/10.1007/s13197-011-0501-2

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-011-0501-2

Keywords

Navigation