Skip to main content
Log in

Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L.

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The effects of raw, dry heated and pressure cooked samples on total phenolic components and antioxidant activity in commonly consumed field bean, Dolichos lablab L. was investigated. The raw and processed samples were extracted with 70% methanol. Processing of legumes caused decreases in total phenolic content when compared to the raw samples. However, the dry heating caused remarkable increase in tannin contents (1.809 ± 0.25 g GAE/100 g extract). Dry heated samples of D. lablab was found to possess the highest DPPH (IC50, 2.53 ± 0.17 μg/ml), TEAC (4649.8 ± 38.4 μmol/g DM), OH˙ radical (IC50, 42.2 ± 0.67 μg/ml) scavenging activities, inhibition of linoleic acid and ferric reducing capacity than other samples. The raw samples displayed the highest antihemolytic activity (59.6 ± 1.53%) and chelating capacity (74.2 ± 1.37 mg EDTA/g). Dry heat processing exhibited several advantages in retaining the antioxidant components and activities. The higher correlation was found the phenolic content with chelating (r 2 = 0.933) and antihemolytic (r 2 = 0.839) activities, but a poor correlation with other assays. Moreover, the content of tannins gave good correlation (r 2 = 0.644–0.997) with all antioxidant assays. The low correlation values between total phenols and the antioxidative activity suggest that the major antioxidant compounds in studied seeds might be tannins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amarowicz R, Karamac M, Shahidi F (2003) Antioxidant activity of phenolic fractions of lentils (Lens culinaris). J Food Lipids 10:1–10

    Article  CAS  Google Scholar 

  • Arts MJTJJ, Dallinga S, Voss HP, Haenen GRMM, Bast A (2004) A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chem 88:567–570

    Article  CAS  Google Scholar 

  • Barroga FB, Laurena AC, Mendoza EMT (1985) Polyphenols in mungbean; determination and removal. J Agric Food Chem 33:1006–1009

    Article  CAS  Google Scholar 

  • Boateng J, Verghese M, Walker LT, Ogutu S (2008) Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT Food Sci Technol 41:1541–1547

    Article  CAS  Google Scholar 

  • Carbonaro M, Virgili F, Carnovale E (1996) Evidence for protein-tannin interaction in legumes: Implications in the antioxidant properties of faba bean tannins. LWT Food Sci Technol 29:743–750

    Article  CAS  Google Scholar 

  • Chau CF, Cheung PCK, Wong YS (1998) Hypocholesterolemic effects of protein concentrate from three Chinese indigenous legume seeds. J Agric Food Chem 46:3698–3701

    Article  CAS  Google Scholar 

  • Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006a) Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem 97:654–660

    Article  CAS  Google Scholar 

  • Djeridane A, Yousfi M, Nadjemi B, Vidal N, Lesgards JF, Stocker P (2006b) Screening of some Algerian medicinal plants for the phenolic compounds and their antioxidant activity. Eur Food Res Technol 224:801–809

    Article  Google Scholar 

  • Duenas M, Hernandez T, Estrella I, Rabanal R (2003) Phenolic composition and antioxidant activity of mocan seeds (Visnea mocanera L.f). Food Chem 82:373–379

    Article  CAS  Google Scholar 

  • Duranti M (2006) Grain legume proteins and nutritional properties. Fitoterapia 77:67–82

    Article  CAS  Google Scholar 

  • Erkan N, Ayranci G, Ayranci E (2008) Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem 110:76–82

    Article  CAS  Google Scholar 

  • Fernandez-Orozco R, Zielinski H, Piskuła MK (2003) Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Nahrung Food 47:291–299

    Article  CAS  Google Scholar 

  • Granito M, Paolini M, Perez S (2008) Polyphenols and antioxidant capacity of Phaseolus vulgaris stored under extreme conditions and processed. LWT Food Sci Technol 41:994–999

    Article  CAS  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  Google Scholar 

  • Hochestein P, Atallah AS (1988) The nature of oxidant and antioxidant systems in the inhibition of mutation and cancer. Mutat Res 202:363–375

    Article  Google Scholar 

  • Hwang JY, Shue YS, Chang HM (2001) Antioxidant activity of roasted and defatted peanut kernels. Food Res Int 34:639–647

    Article  CAS  Google Scholar 

  • Jiratanan T, Liu RH (2004) Antioxidant activity of processed table beets (Beta vulgaris var. conditiva) and green beans (Phaseolus vulgaris L.). J Agric Food Chem 52:2659–2670

    Article  CAS  Google Scholar 

  • Kaur CH, Kapoor H (2002) Antioxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Technol 37:153–161

    Article  CAS  Google Scholar 

  • Kikuzaki H, Nakatani N (1993) Antioxidant effects of some ginger constituents. J Food Sci 58:1407–1410

    Article  CAS  Google Scholar 

  • Klein SM, Cohen G, Cederbaum AI (1991) Production of formaldehyde during metabolism of dimethyl sulphoxide by hydroxyl radical generating system. Biochemistry 20:6006–6012

    Article  Google Scholar 

  • Makkar HPS, Becker K, Abel H, Pawelzik E (1997) Nutrient contents, rumen protein degradability and antinutritional factors in some colour and white-flowering cultivars of Vicia faba beans. J Sci Food Agric 75:511–520

    Article  CAS  Google Scholar 

  • Manian R, Anusuya N, Siddhuraju P, Manian S (2008) The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Food Chem 107:1000–1007

    Article  CAS  Google Scholar 

  • Naim M, Gestetner B, Bondi A, Birk Y (1976) Antioxidative and antihemolytic activities of soybean isoflavones. J Agric Food Chem 24:1174–1177

    Article  CAS  Google Scholar 

  • Oboh G (2006) Antioxidant properties of some commonly consumed and underutilized tropical legumes. Eur Food Res Technol 224:61–65

    Article  CAS  Google Scholar 

  • Oomah BD, Tiger N, Olson M, Balasubramanian P (2006) Phenolics and antioxidative activities in narrow leafed lupins (Lupinus angustifolius L.). Plant Foods Hum Nutr 61:91–97

    Article  CAS  Google Scholar 

  • Othman A, Ismail A, Abdul Ghani N, Adenan I (2007) Antioxidant capacity and phenolic content of cocoa beans. Food Chem 100:1523–1530

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Pastor-Cavada E, Juan R, Pastor JE, Alaiz M, Vioque J (2009) Antioxidant activity of seed polyphenols in fifteen wild Lathyrus species from South Spain. LWT Food Sci Technol 42:705–709

    Article  CAS  Google Scholar 

  • Re R, Pellegirini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Rocha-Guzman NE, Gonzalez-Laredo RF, Ibarra-Perez FJ, Nava-Berumen CA, Gallegos-Infante JA (2007) Effect of pressure cooking on the antioxidant activity of extracts from three common bean (Phaseolus vulgaris L.) cultivars. Food Chem 100:31–35

    Article  CAS  Google Scholar 

  • Sanchez-Moreno C, Larrauri JA, Saura-Calixto F (1998) A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric 76:270–276

    Article  CAS  Google Scholar 

  • Shimada K, Fujikawa K, Yahara NT (1992) Antioxidative properties of xanthin on autoxidation of soybeanoil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    Article  CAS  Google Scholar 

  • Siddhuraju P, Becker K (2003) Studies on antioxidant activities of mucuna seed (Mucuna pruriens var. utilis) extracts and certain non-protein amino/ imino acids through in vitro models. J Sci Food Agric 83:1517–1524

    Article  CAS  Google Scholar 

  • Siddhuraju P, Manian S (2007) The antioxidant activity and free radical scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem 105:950–958

    Article  CAS  Google Scholar 

  • Siddhuraju P, Maheshu V, Loganayaki N, Manian S (2008) Antioxidant activity and free radical scavenging capacity of dietary phenolic extracts from processed indigenous legumes, Macrotyloma uniflorum (Lam.) Verdc. and Dolichos lablab L. Food 2:159–167

    Google Scholar 

  • Tharanathan RN, Mahadevamma S (2003) Grain legumes- a boon to human nutrition. Trends Food Sci Technol 14:507–518

    Article  CAS  Google Scholar 

  • The Wealth of India (1992) Raw Materials 3, CSIR, New Delhi, India, p 59–67

  • Tsai PJ, She CH (2006) Significance of phenol-protein interactions in modifying the antioxidant capacity of peas. J Agric Food Chem 54:8491–8494

    Article  CAS  Google Scholar 

  • Tsuda T, Ohshima K, Kawakishi S, Osawa T (1994) Antioxidant pigments isolated from the seeds of Phaseolus vulgaris L. J Agric Food Chem 42:248–251

    Article  CAS  Google Scholar 

  • Xu BJ, Yuan SH, Chang SKC (2007) Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J Food Sci 72:S167–S177

    Article  CAS  Google Scholar 

  • Yamaguchi T, Takamura H, Matoba T, Terao J (1998) HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 62:1201–1204

    Article  CAS  Google Scholar 

  • Yamaguchi F, Ariga T, Yoshirmura Y, Nakazawa K (2000) Antioxidative and antiglycation activity of garcinol from Garcinia indica fruit rind. J Agric Food Chem 48:180–185

    Article  CAS  Google Scholar 

  • Ye XY, Wang HX, Ng TB (2000) Dolichin, a new chitinase-like antifungal protein isolated from field beans (Dolichos lablab). Biochem Biophys Res Commun 269:155–159

    Article  CAS  Google Scholar 

  • Yen WJ, Chang LW, Duh PD (2005) Antioxidant activity of peanut seed testa and its antioxidative component, ethyl protocatechuate. LWT Food Sci Technol 38:193–200

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Management, Karpagam Educational Institutions for generous support and encouragement to carry out the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagathala Mahalingam Sasikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maheshu, V., Priyadarsini, D.T. & Sasikumar, J.M. Effects of processing conditions on the stability of polyphenolic contents and antioxidant capacity of Dolichos lablab L.. J Food Sci Technol 50, 731–738 (2013). https://doi.org/10.1007/s13197-011-0387-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-011-0387-z

Keywords

Navigation