Skip to main content
Log in

On the Convolution of Scaled Sibuya Distributions

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We introduce a new heavy tailed distribution on \(\mathbb {Z}_+\) that arises as the infinite convolution of scaled Sibuya distributions. We provide closed form expressions for its probability mass function, its cumulative distribution function, and its probability generating function. We interpret our main results in terms of the weak convergence of partial sums of a binomially thinned sequence of i.i.d. random variables with a common scaled Sibuya distribution. Properties of infinite divisibility and discrete self-decomposability of the new distribution are also discussed. As an application, we briefly describe an integer-valued autoregressive process of order one with a scaled Sibuya innovation sequence. Finally, we discuss some partial extensions of our results to the case of the generalized Sibuya distribution introduced by Kozubowski and Podgórski., Ann. of the Inst. Statist. Math., 70(4), 855-887., 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Osh, M.A. and Alzaid, A.A. (1987). First-order integer valued autoregressive INAR(1) process. Journal of Time Series Analysis, 8, 261–275.

    Article  MathSciNet  Google Scholar 

  • Aly, E.-E.A.A., and Bouzar, N. (2023). Stationary underdispersed INAR (1) models based on the backward approach. Accepted - March 2023. REVSTAT-Statistical Journal. Retrieved from https://revstat.ine.pt/index.php/REVSTAT/article/view/515

  • Alzaid, A.A.and Al-Osh, M.A. (1990) An integer-valued \(p\)-th order autoregressive structure (INAR(\(p\))) process. Journal of Applied Probability 27, 314–324.

    Article  MathSciNet  Google Scholar 

  • Athreya, K.B. and Ney, P.E. (2004). Branching Processes, Dover Publications (originally published in 1972 by Springer-Verlag Berlin-Heidelberg).

  • Breiman, L. (1968). Probability. Addison-Wesley Publishing Company.

  • Christoph, G. and Schreiber, K. (2000). Scaled Sibuya distribution and discrete self-decomposability. Statist. Probab. Lett. 48, 181–187.

    Article  MathSciNet  Google Scholar 

  • Foster, J.H. and Williamson, J.A. (1971). Limit theorems for the Galton-Watson process with time-dependent immigration. Z. Wahrscheinlichkeitstheorie verw Gebiete 20, 227-235.

    Article  MathSciNet  Google Scholar 

  • Huillet, T. and Möhle, M. (2023). On Bernoulli trials with unequal harmonic success probabilities, Metrika, https://doi.org/10.1007/s00184-023-00913-5

    Article  Google Scholar 

  • Johnson, L.N., Kemp, A.W., and Kotz, S. (2005). Univariate Discrete Distributions, Third Ed., John Wiley & Sons Inc.

  • Kozubowski, T.J. and Podgórski, K. (2018). A generalized Sibuya distribution, Ann. of the Inst. Statist. Math., 70(4), 855–887.

    Article  MathSciNet  Google Scholar 

  • Kruchinin, V.V. (2010). Composition of ordinary generating functions arXiv:1009.2565 [math.CO]https://doi.org/10.48550/arXiv.1009.2565,

  • Loya, P. (2017). Amazing and Aesthetic Aspects of Analysis. Springer New York.

    Book  Google Scholar 

  • McKenzie, E. (1988). Some ARMA models for dependent sequences of Poisson counts. Advances in Applied Probability, 20, 822–835.

    Article  MathSciNet  Google Scholar 

  • Sibuya, M. (1979). Generalized hypergeometric digamma and trigamma distributions. Ann. of the Inst. Statist. Math. 31, 373–390.

    Article  MathSciNet  Google Scholar 

  • Steutel, F.W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Ann. Probab. 7, 893–899.

    Article  MathSciNet  Google Scholar 

  • Steutel, F.W. and van Harn, K.: Infinite Divisibility of Probability Distributions on the Real Line. Marcel Dekker, Inc., New York-Basel, 2004.

    Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referees for comments and suggestions that have significantly improved the content and the presentation of the paper.

Funding

The author did not receive any funding or other support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjib Bouzar.

Ethics declarations

Conflicts of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 5

Assume \(n\ge 2\), \(a_{i}\in [0,1]\) for \(i=0,1,2,\cdots ,n-1\) and \(a\in (0,1)\). Then,

  1. (i)
    $$\begin{aligned} \prod _{i=0}^{n-1}(1-a_{i})=1+\sum _{k=1}^{n}(-1)^{k}\Bigl [\sum \limits _{0\le j_{1}<j_{2}<\cdots <j_{k}\le n-1}\prod _{l=1}^{k}a_{j_{l}}\Big ]. \end{aligned}$$
    (42)
  2. (ii)
    $$\begin{aligned} \sum _{0\le j_{1}<j_{2}<\cdots <j_{k}\le n-1} a^{j_{1}} a^{j_{2}}\cdots a^{j_{k}}=a^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) }\prod _{l=0}^{k-1}{\frac{1-a^{n-l}}{1-a^{l+1}}} \end{aligned}$$
    (43)

    for every \(k\in \{1.\cdots ,n\}\).

Proof

See Appendix (Lemma 2) in Aly and Bouzar (2023).\(\square \)

Lemma 6

Let \(n\ge 1\), and for \(0\le i \le n-1\), \(\lambda _i\in (0,1]\) and \(\gamma _i\in (0,1]\). Let \(p_r^{(n)}=\bigl (f(\lambda _0,\gamma _0)*f(\lambda _1,\gamma _1) *\cdots *f(\lambda _{n-1},\gamma _{n-1})\bigr )_r \), \(r\ge 0\), be the pmf of the convolution of the scaled Sibuya distributions \((\{f_r(\lambda _i,\gamma _i\}\), \(0\le i\le n-1)\). The the following assertions are true.

  1. (i)

    If \(\gamma _i\in (0,1)\) for all \(0\le i\le n-1\), or if \(\gamma _i=1\) for some but not all i’s, then

    $$\begin{aligned} p_r^{(n)}= {\left\{ \begin{array}{ll} \prod _{i=0}^{n-1}(1-\lambda _i) &{}\hbox {if\ } r=0\\ \sum _{k=1}^n (-1)^{r+k} \beta _k^{(n)}(r) &{} \hbox {if } r\ge 1,\\ \end{array}\right. } \end{aligned}$$
    (44)

    where

    $$\begin{aligned} \beta _k^{(n)}(r)=\left( {\begin{array}{c}\sum _{l=1}^k\gamma _{j_l}\\ r\end{array}}\right) \sum _{0\le j_1<j_2<\cdots <j_k\le n-1}\Bigl (\prod _{l=1}^k \lambda _{j_l}\Bigr ). \end{aligned}$$
    (45)
  2. (ii)

    If \(\gamma _0=\gamma _1=\cdots =\gamma _{n-1}=1\), i.e., \(\{ p_r^{(n)}\}\) is the convolution of Bernoulli distributions, then its support reduces to \(0\le r\le n\) and formula Eq. 44 holds with

    $$\begin{aligned} \beta _k^{(n)}(r)= {\left\{ \begin{array}{ll} 0 &{} \hbox {if\ } r\ge k+1\\ \displaystyle \left( {\begin{array}{c}k\\ r\end{array}}\right) \sum _{0\le j_1<j_2<\cdots <j_k\le n-1}\Bigl (\prod _{l=1}^k \lambda _{j_l}\Bigr ) &{} \hbox {if\ } 1\le r\le k\le n.\\ \end{array}\right. } \end{aligned}$$
    (46)
  3. (iii)

    If \(\lambda _0=\lambda _1=\cdots =\lambda _{n-1}=1\), i.e, \(\{p_r^{(n)}\}\) is the convolution of standard Sibuya distributions, then formula Eq. 44 holds with

    $$\begin{aligned} \beta _k^{(n)}(r)=\sum _{0\le j_1<j_2<\cdots <j_k\le n-1}\left( {\begin{array}{c}\sum _{l=1}^k\gamma _{j_l}\\ r\end{array}}\right) , \qquad 1\le k\le n. \end{aligned}$$
    (47)

Proof

(i) The pgf of \(\{p_r^{(n)}\}\) is \(P(z)=\prod _{i=0}^{n-1} (1-\lambda _i(1-z)^{\gamma _i})\). Since \(p_0^{(n)}=P(0)\), Eq. 44 holds for \(r=0\). Let \(a_i=\lambda _i(1-z)^{\gamma _i}\), \(0\le i\le n-1\). Clearly, \(a_i\in (0,1)\) for any \(z\in [0,1)\). Therefore, by Eq. 42 in Lemma 5,

$$\begin{aligned} P(z)=1+\sum _{k=1}^{n}(-1)^{k}\Bigl [\sum \limits _{0\le j_{1}<j_{2}<\cdots <j_{k}\le n-1}\Bigl (\prod _{l=1}^k \lambda _{j_l}\Bigr ) (1-z)^{\sum _{l=1}^k\gamma _{j_l}}\Big ] \end{aligned}$$
(48)

for any \(z\in [0,1)\). By the binomial series expansion, we have

$$ (1-z)^{\sum _{l=1}^k\gamma _{j_l}}=\sum _{r=0}^\infty (-1)^r\left( {\begin{array}{c}\sum _{l=1}^k\gamma _{j_l}\\ r\end{array}}\right) z^r \quad 0\le z<1. $$

This implies that for any \(z\in [0,1)\),

$$ P(z)=1+\sum _{r=0}^\infty (-1)^r\biggl (\sum _{k=1}^{n}(-1)^{k}\Bigl [\sum \limits _{0\le j_{1}<j_{2}<\cdots <j_{k}\le n-1}\Bigl (\prod _{l=1}^k \lambda _{j_l}\Bigr )\left( {\begin{array}{c}\sum _{l=1}^k\gamma _{j_l}\\ r\end{array}}\right) \Big ]\biggr )z^r, $$

thus establishing (44) for any \(r\ge 1\). Part (ii) follows from Eqs. 4445 and the fact that \(\sum _{l=1}^k\gamma _{j_l}=k\), and part (iii) from the fact that \(\prod _{l=1}^k \lambda _{j_l}=1\). \(\square \)

Proof of Theorem 1

To prove (i), we note by Proposition 1 that \(\{p_r^{(n}\}\) of Eq. 4 has pgf

$$\begin{aligned} \varphi _n(z)=\prod _{k=0}^{n-1} (1-\lambda \alpha ^{k\gamma }(1-z)^\gamma )\quad (0\le z\le 1). \end{aligned}$$
(49)

Therefore, the convergence in distribution of the sequence \((\{p_r^{(n)}\}, n\ge 1)\) of Eq. 4 will follow by establishing that \(\varphi (z)\) of Eq. 3 is indeed a pgf. To prove this fact we call on Theorem (part (iii)) in Foster and Williamson (1971). Translating their notation in our context, we have \(h(z)=1-\lambda (1-z)^\gamma \) and \(f(z)=1-\alpha +\alpha z\). Then

$$ \frac{1-h(z)}{f(z)-z}=\frac{1-\Psi (z)}{(1-\alpha )(1-z)}=\lambda (1-z)^{\gamma -1}/(1-\alpha )\qquad 0\le z<1. $$

The sequence of pgf’s \(\{\varphi _n(z)\}\) converges to a pgf if and only if \(\int _0^1\frac{1-\Psi (z)}{(1-\alpha )(1-z)}\,\) \(dz <\infty \). The latter condition clearly holds. Therefore, \(\varphi (z)\) is a pgf. Next, we prove Eq. 6. First, we note that \(\lim _{n\rightarrow \infty }p_0^{(n)}=\prod _{k=0}^\infty (1-\lambda \alpha ^{k\gamma }) <\infty \), since \(\sum _{k=0}^\infty \lambda \alpha ^{k\gamma }<\infty \). Let \(r\ge 1\). We define a purely atomic measure, we denote meas, on \(\mathbb {Z}_+\) and its power set \(\mathcal {P}(\mathbb {Z_+})\) as follows:

$$\begin{aligned} meas(\{k\})={\frac{\lambda ^{k}\alpha ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) \gamma }}{\prod _{l=1}^{k}(1-\alpha ^{l\gamma })}}\quad (k\ge 1), \end{aligned}$$
(50)

with \(meas(\{0\})=1\). Note that meas is a finite measure, i.e., \(\sum _{k=0}^{\infty } meas\) \((\{k\})<\infty \) by the ratio test, as \(meas(\{k+1\})/meas(\{k\})=\lambda \alpha ^{k\gamma }/(1-\alpha ^{(k+1)\gamma })\). For a fixed integer \(r\ge 0\), we define a the sequence of functions \(\{f_{n}^{(r)}(\cdot )\}\) on \(\mathbb {Z}_+\) as follows:

$$ f_n^{(r)}(k)=(-1)^{r+k}\left( {\begin{array}{c}k\gamma \\ r\end{array}}\right) \prod _{l=0}^{k-1}(1-\alpha ^{(n-l)\gamma }) I_{\{1,2,\cdots ,n\}}(k) \qquad (k\ge 0). $$

Then, \(p_r^{(n)}\) of Eq. 4 admits the representation \(p_r^{(n)}\!=\!I_{\{0\}}(r)+ \int _{\mathbb {Z}_+}f_n^{(r)}(k)\,meas\) (dk) on the measure space \((\mathbb {Z}_+,\mathcal {P}(\mathbb {Z}_+),meas)\). Next, we define a function h on \(\mathbb {Z}_+\): \(h(k)=\left( {\begin{array}{c}k\gamma \\ r\end{array}}\right) \). It is clear that \(|f_{n}^{(r)}(k)|\le |h(k)|\) (recall \(\alpha \in (0,1)\)) and that \(\sum _{k=0}^{\infty }|h(k)|meas(\{k\})<\infty \) by the ratio test (as \(|h(k+1)/h(k)| \rightarrow 1\) as \(k\rightarrow \infty \)), implying the integrability of |h(k)|. Moreover, for every \(k\in \mathbb {Z}_+\), \(\lim _{n\rightarrow \infty }f_{n}^{(r)}(k)=(-1)^{r+k}\left( {\begin{array}{c}k\gamma \\ r\end{array}}\right) \). It follows by the dominated convergence theorem that

$$ p_{r}=I_{\{0\}}(r)+\lim _{n\rightarrow \infty }\int _{\mathbb {Z}_+}f_{n}^{(r)}(k)\,meas(dk)=I_{\{0\}}(r)+\int _{\mathbb {Z}_+}(-1)^{r+k}\left( {\begin{array}{c}k\gamma \\ r\end{array}}\right) \,meas(dk), $$

which is precisely Eq. 6, thus completing the proof of (i). For part (ii), we note that Eq. 7 is trivially true for \(r=0\). We have by Eq. 6 that for any \(r\ge 1\),

$$ \sum _{j=0}^r p_j=1+ \sum _{j=0}^r \sum _{k=1}^\infty (-1)^{k+j} \frac{\lambda ^k\alpha ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) \gamma }}{\prod \limits _{l=1}^k (1-\alpha ^{l\gamma })}\left( {\begin{array}{c}k\gamma \\ j\end{array}}\right) , $$

or

$$ \sum _{j=0}^r p_j=1+ \sum _{k=1}^\infty (-1)^{k} \frac{\lambda ^k\alpha ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) \gamma }}{\prod \limits _{l=1}^k (1-\alpha ^{l\gamma })} \Bigl [\sum _{j=0}^r (-1)^j \left( {\begin{array}{c}k\gamma \\ j\end{array}}\right) \Bigr ]. $$

Using the identity \(\left( {\begin{array}{c}k\gamma \\ j\end{array}}\right) =\left( {\begin{array}{c}k\gamma -1\\ j-1\end{array}}\right) +\left( {\begin{array}{c}k\gamma -1\\ j\end{array}}\right) \) (\(j\ge 1\)), it is easily shown that \(\sum _{j=0}^r (-1)^j \left( {\begin{array}{c}k\gamma \\ j\end{array}}\right) =(-1)^r \left( {\begin{array}{c}k\gamma -1\\ r\end{array}}\right) \), completing the proof of Eq. 7. To prove Eq. 8 in part (iii), we note \(\varphi (z)\) of Eq. 3 can be rewritten as

$$\begin{aligned} \varphi (z)=\exp \left\{ \sum _{k=0}^{\infty }\ln (1-\lambda \alpha ^{k\gamma }(1-z)^\gamma )\right\} . \end{aligned}$$
(51)

The representation Eq. 8 of \(\varphi (z)\) follows by way of the power series expansion \(-\ln (1-x)=\sum _{n=1}^{\infty }x^{n}/n\), \(0\le x<1\) applied at \(x=\lambda \alpha ^{k\gamma }(1-z)^\gamma \) to the summands in Eq. 51 combined with the fact that the uniform convergence over [0, 1] of the resulting double series (summands dominated by \(\lambda ^n\alpha ^{k\gamma }\)) allows for the interchanging of the order of summation. To prove Eq. 9, let \(a_{i}=\lambda \alpha ^{i\gamma }(1-z)^\gamma \) in Eq. 42. Using Eq. 43 yields the following expression for \(\varphi _{n}(z)\) of Eq. 49:

$$\begin{aligned} \varphi _n(z)=1+\sum _{k=1}^n (-1)^k \lambda ^k (1-z)^{k\gamma }\alpha ^{\left( {\begin{array}{c}k\\ 2\end{array}}\right) \gamma }\prod _{l=0}^{k-1}{\frac{1-\alpha ^{(n-l)\gamma }}{1-\alpha ^{(l+1)\gamma }}}. \end{aligned}$$
(52)

We now proceed as in the proof of Eq. 6. We define a sequence of functions \(\{g_n(\cdot )\}\) on the finite measure space \((\mathbb {Z}_+,\mathcal {P}(\mathbb {Z}_+),meas)\), with meas of Eq. 50, as follows: \(g_n(0)=1\) and

$$ g_n(k)=(-1)^k(1-z)^{k\gamma }\Bigl (\prod _{l=0}^{k-1}(1-\alpha ^{(n-l)\gamma })\Bigr )I_{\{1,2,\cdots ,n\}}(k) \qquad (k\ge 1). $$

It is easily seen that \(|g_{n}(k)|\le 1\) (recall \(\alpha \in (0,1)\) and \(z\in [0,1]\)) and that \(g(k)=\lim _{n\rightarrow \infty }g_{n}(k)\) takes the following values: \(g(0)=1\) and \(g(k)=(-1)^k(1-z)^{k\gamma }\) if \(k\ge 1\). Rewriting Eq. 52 in terms of the discrete integral on \((\mathbb {Z}_+,\mathcal {P} (\mathbb {Z}_+),meas)\) and calling on the dominated convergence theorem, we have

$$ \varphi (z)=\lim _{n\rightarrow \infty }\varphi _n(z)=\lim _{n\rightarrow \infty }\int _{\mathbb {Z_+}}g_{n}(k)\,meas(dk)=\int _{\mathbb {Z}_+}g(k)\,meas(dk), $$

which establishes Eq. 9, and thus completes the Proof of Theorem 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzar, N. On the Convolution of Scaled Sibuya Distributions. Sankhya A (2024). https://doi.org/10.1007/s13171-024-00346-w

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s13171-024-00346-w

Keywords

Mathematics Subject Classification (2010)

Navigation