Skip to main content
Log in

Expectation Thinning Operators Based on Linear Fractional Probability Generating Functions

  • Research article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

We introduce a two-parameter expectation thinning operator based on a linear fractional probability generating function. The operator is then used to define a first-order integer-valued autoregressive INAR (1) process. Distributional properties of the INAR (1) process are described. We revisit the Bernoulli-geometric INAR (1) process of Bourguignon and Weiß (Test 26(4):847–868, 2017. https://doi.org/10.1007/s11749-017-0536-4) and we introduce a new stationary INAR (1) process with a compound negative binomial distribution. Lastly, we show how a proper randomization of our operator leads to a generalized notion of monotonicity for distributions on \(\mathbf{Z}_+\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alamatsaz MH (1993) On discrete \(\alpha \)-unimodal distributions. Stat Neerl 47:245–252

    Article  MathSciNet  MATH  Google Scholar 

  • Al-Osh MA, Aly E-EAA (1992) First order autoregressive time series with negative binomial and geometric marginals. Commun Stat Theory Methods 21:2483–2492

    Article  MathSciNet  MATH  Google Scholar 

  • Aly E-EAA, Bouzar N (1994) Explicit stationary distributions for some Galton–Watson processes with immigration. Commun Statist Stoch Models 10:499–517

    Article  MathSciNet  MATH  Google Scholar 

  • Aly E-EAA, Bouzar N (1994b) On some integer-valued autoregressive moving average models. J Multivar Anal 50:132–151

    Article  MathSciNet  MATH  Google Scholar 

  • Aly E-EAA, Bouzar N (2002) A notion of \(\alpha \)-monotonicity with generalized multiplications. Ann Inst Stat Math 54:125–137

    Article  MathSciNet  MATH  Google Scholar 

  • Athreya KB, Ney PE (1972) Branching Processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Barreto-Souza W (2015) Zero-modified geometric INAR (1) process for modelling count time series with deflation or inflation of zeros. J Time Ser Anal 36:839–852

    Article  MathSciNet  MATH  Google Scholar 

  • Bourguignon M, Weiß CH (2017) An INAR(1) process for modeling count time series with equidispersion, underdispersion and overdispersion. Test 26(4):847–868. https://doi.org/10.1007/s11749-017-0536-4

  • Borges P, Molinares FF, Bourguignon M (2016) A geometric time series model with inflated-parameter Bernoulli counting series. Stat Probab Lett 119:264–272

    Article  MathSciNet  MATH  Google Scholar 

  • Borges P, Bourguignon M, Molinares FF (2017) A generalized NGINAR(1) process with inflated-parameter geometric counting series. Aust NZ J Stat 59:137–150

    Article  MATH  Google Scholar 

  • Foster JH, Williamson JA (1971) Limit theorems for the Galton–Watson process with time-dependent immigration. Z Wahrsch Verw Gebiete 20:227–235

    Article  MathSciNet  MATH  Google Scholar 

  • Harris TE (1963) The theory of branching processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • van Harn K, Steutel FW, Vervaat W (1982) Self-decomposable discrete distributions and branching processes. Z Wahrscheinlichkeitstheor Verw Gebiete 61:97–118

    Article  MathSciNet  MATH  Google Scholar 

  • Jazi MA, Alamatsaz MH (2012) Two new thinning operators and their applications. Glob J Pure Appl Math 8:13–28

    Google Scholar 

  • McKenzie E (2003) Discrete variate time series. Shanbhag DN et al. (ed) Stochastic processes: modelling and simulation. Handb Stat 21:573–606. Amsterdam, North-Holland

  • Ristić MM, Bakouch HS, Nastić AS (2009) A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J Stat Plan Inf 139:2218–2226

    Article  MathSciNet  MATH  Google Scholar 

  • Scotto MG, Weiß CH, Gouveia S (2015) Thinning-based models in the analysis of integer-valued time series: a review. Stat Model 1515:590–618

    Article  MathSciNet  Google Scholar 

  • Steutel FW (1988) Note on discrete \(\alpha \)-unimodality. Stat Neerl 48:137–140

    Article  MathSciNet  MATH  Google Scholar 

  • Steutel FW, van Harn K (1979) Discrete analogues of self-decomposability and stability. Ann Probab 7:893–899

    Article  MathSciNet  MATH  Google Scholar 

  • Weiß CH (2008) Thinning operations for modeling time series of countsa survey. AStA Adv Stat Anal 92(2008):319–341

    Article  MathSciNet  Google Scholar 

  • Zhu R, Joe H (2003) A new type of discrete self-decomposability and its application to continuous-time Markov processes for modeling count data time series. Stoch Models 19:235–254

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjib Bouzar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, EE.A.A., Bouzar, N. Expectation Thinning Operators Based on Linear Fractional Probability Generating Functions. J Indian Soc Probab Stat 20, 89–107 (2019). https://doi.org/10.1007/s41096-018-0056-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-018-0056-x

Keywords

Navigation