Skip to main content
Log in

Weighted weak-type inequalities for maximal operators and singular integrals

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

We prove quantitative, one-weight, weak-type estimates for maximal operators, singular integrals, fractional maximal operators and fractional integral operators. We consider a kind of weak-type inequality that was first studied by Muckenhoupt and Wheeden (Indiana Univ. Math. J. 26(5):801–816, 1977) and later in Cruz-Uribe et al. (Int. Math. Res. Not. 30:1849–1871, 2005). We obtain quantitative estimates for these operators in both the scalar and matrix weighted setting using sparse domination techniques. Our results extend those obtained by Cruz-Uribe et al. (Rev. Mat. Iberoam. 37(4):1513–1538, 2021) for singular integrals and maximal operators when \(p=1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berra, F.: Mixed weak estimates of Sawyer type for generalized maximal operators. Proc. Am. Math. Soc. 147(10), 4259–4273 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bownik, M., Cruz-Uribe, D.: Extrapolation and factorization of matrix weights. preprint (2022)

  3. Conde-Alonso, J., Rey, G.: A pointwise estimate for positive dyadic shifts and some applications. Math. Ann. 365(3–4), 1111–1135 (2016)

    Article  MathSciNet  Google Scholar 

  4. Cruz-Uribe, D.: Two weight inequalities for fractional integral operators and commutators. In: Martin-Reyes, F.J. (ed.) VI International Course of Mathematical Analysis in Andalusia, pp. 25–85. World Scientific (2016)

  5. Cruz-Uribe, D.: Extrapolation and factorization. In: Lukes, J., Pick, L. (ed.) Function Spaces, Embeddings and Extrapolation X, Paseky 2017, pp. 45–92. Matfyzpress, Charles University (2017). arXiv:1706.02620

  6. Cruz-Uribe, D., Isralowitz, J., Moen, K.: Two weight bump conditions for matrix weights. Integral Equ. Oper. Theory 90(3), 31 (2018)

    MathSciNet  Google Scholar 

  7. Cruz-Uribe, D., Isralowitz, J., Moen, K., Pott, S., Rivera-Ríos, I.: Weak endpoint bounds for matrix weights. Rev. Mat. Iberoam. 37(4), 1513–1538 (2021)

    Article  MathSciNet  Google Scholar 

  8. Cruz-Uribe, D., Martell, J.M., Pérez, C.: Weighted weak-type inequalities and a conjecture of Sawyer. Int. Math. Res. Not. 30, 1849–1871 (2005)

    Article  MathSciNet  Google Scholar 

  9. Cruz-Uribe, D., Moen, K., Rodney, S.: Matrix \(\cal{A} _p\) weights, degenerate Sobolev spaces, and mappings of finite distortion. J. Geom. Anal. 26(4), 2797–2830 (2016)

    Article  MathSciNet  Google Scholar 

  10. Cruz-Uribe, D., Sweeting, B.: Weighted weak-type inequalities for maximal operators and singular integrals. arXiv preprint, Version 1 (2023). arXiv:2311.00828v1

  11. Domelevo, K., Petermichl, S., Treil, S., Volberg, A.: The matrix \(A_2\) conjecture fails, i.e. \(3/2>1\). preprint, 2024. arXiv:2402:06961

  12. Duoandikoetxea, J.: Fourier Analysis, volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001)

  13. Goldberg, M.: Matrix \(A_p\) weights via maximal functions. Pacific J. Math. 211(2), 201–220 (2003)

    Article  MathSciNet  Google Scholar 

  14. Grafakos, L.: Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics. Springer, New York, 2nd edition (2008)

  15. Hytönen, T.: The sharp weighted bound for general Calderón-Zygmund operators. Ann. Math. 175(3), 1473–1506 (2012)

    Article  MathSciNet  Google Scholar 

  16. Hytönen, T., Lacey, M.T.: The \(A_p\)-\(A_\infty \) inequality for general Calderón-Zygmund operators. Indiana Univ. Math. J. 61(6), 2041–2092 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_\infty \). Anal. PDE 6(4), 777–818 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hytönen, T.P., Lacey, M.T., Martikainen, H., Orponen, T., Reguera, M., Sawyer, E.T., Uriarte-Tuero, I.: Weak and strong type estimates for maximal truncations of Calderón-Zygmund operators on \(A_p\) weighted spaces. J. Anal. Math. 118(1), 177–220 (2012)

    Article  MathSciNet  Google Scholar 

  19. Isralowitz, J., Moen, K.: Matrix weighted Poincaré inequalities and applications to degenerate elliptic systems. Indiana Univ. Math. J. 68(5), 1327–1377 (2019)

    Article  MathSciNet  Google Scholar 

  20. Lacey, M.T., Moen, K., Pérez, C., Torres, R.H.: Sharp weighted bounds for fractional integral operators. J. Funct. Anal. 259(5), 1073–1097 (2010)

    Article  MathSciNet  Google Scholar 

  21. Lerner, A.: On an estimate of Calderón-Zygmund operators by dyadic positive operators. J. Anal. Math. 121, 141–161 (2013)

    Article  MathSciNet  Google Scholar 

  22. Lerner, A.: A simple proof of the \(A_2\) conjecture. Int. Math. Res. Not. 23(3), 3159–3170 (2013)

    Article  Google Scholar 

  23. Lerner, A., Li, K., Ombrosi, S., Rivera-Ríos, I.: On some improved weighted weak type inequalities. preprint (2024). arXiv:2402.00506

  24. Lerner, A., Li, K., Ombrosi, S., Rivera-Ríos, I.: On the sharpness of some matrix weighted endpoint estimates. preprint (2023). arXiv:2310.06718v1

  25. Lerner, A., Nazarov, F.: Intuitive dyadic calculus: the basics. Expo. Math. 37(3), 225–265 (2019)

    Article  MathSciNet  Google Scholar 

  26. Lerner, A., Nazarov, F., Ombrosi, S.: On the sharp upper bound related to the weak Muckenhoupt-Wheeden conjecture. Anal. PDE 13(6), 1939–1954 (2020)

    Article  MathSciNet  Google Scholar 

  27. Li, K., Ombrosi, S., Belén Picardi, M.: Weighted mixed weak-type inequalities for multilinear operators. Studia Math. 244(2), 203–215 (2019)

    Article  MathSciNet  Google Scholar 

  28. Li, K., Ombrosi, S., Pérez, C.: Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates. Math. Ann. 374(1–2), 907–929 (2019)

    Article  MathSciNet  Google Scholar 

  29. Moen, K.: Sharp weighted bounds without testing or extrapolation. Arch. Math. (Basel) 99(5), 457–466 (2012)

    Article  MathSciNet  Google Scholar 

  30. Muckenhoupt, B., Wheeden, R.L.: Some weighted weak-type inequalities for the Hardy-Littlewood maximal function and the Hilbert transform. Indiana Univ. Math. J. 26(5), 801–816 (1977)

    Article  MathSciNet  Google Scholar 

  31. Nazarov, F., Petermichl, S., Treil, S., Volberg, A.: Convex body domination and weighted estimates with matrix weights. Adv. Math. 318, 279–306 (2017)

    Article  MathSciNet  Google Scholar 

  32. Nieraeth, Z., Stockdale, C., Sweeting, B.: Weighted weak-type bounds for multilinear singular integrals. preprint, (2024). arXiv:2401.15725

  33. Ombrosi, S., Pérez, C., Recchi, J.: Quantitative weighted mixed weak-type inequalities for classical operators. Indiana Univ. Math. J. 65(2), 615–640 (2016)

    Article  MathSciNet  Google Scholar 

  34. Roudenko, S.: Matrix-weighted Besov spaces. Trans. Am. Math. Soc. 355(1), 273–314 (2003)

    Article  MathSciNet  Google Scholar 

  35. Sawyer, E.T.: A weighted weak type inequality for the maximal function. Proc. Am. Math. Soc. 93(4), 610–614 (1985)

    Article  MathSciNet  Google Scholar 

  36. Sweeting, B.: A characterization of weights for a weak-type estimate of the maximal operator. preprint (2023)

Download references

Funding

The first author is partially supported by a Simons Foundation Travel Support for Mathematicians Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cruz-Uribe.

Ethics declarations

Conflict of interest

The authors have no other Conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

David Cruz-Uribe is partially supported by a Simons Foundation Travel Support for Mathematicians Grant. The authors would like to thank the anonymous referees for their feedback, particularly for suggesting the example now in the Appendix.

Proof of Theorem A.1

Proof of Theorem A.1

In this section we provide a simple proof of a lower bound for the constant in Theorem 1.3. This bound is worse than the sharp result found in [24], but we believe it provides some insight into the behavior of weights in multiplier weak-type inequalities. The authors would like to thank an anonymous referee for suggesting this example, which is better than the example we originally sketched in [10].

Theorem A.1

When \(n=1\), given \(w\in A_1\), for the maximal operator we must have that

$$\begin{aligned} \Vert wM(\cdot \, w^{-1}) \Vert _{L^1 \rightarrow L^{1,\infty }} > rsim [w]_{A_1}. \end{aligned}$$

To prove this result we construct an explicit weight \(w\in A_1\) and function f such that

$$\begin{aligned} \sup _{\lambda> 0}\,\lambda |\{x\in (0,\infty ) : w(x)|Mf(x)|>\lambda \}| \le C_0 \int _\mathbb {R}|f(x)|w(x)\,dx, \end{aligned}$$
(A.1)

where the constant must satisfy \(C_0 > rsim [w]_{A_1}\). For \(N > 0\), consider the weight \(w(x)=\upchi _{(-\infty , 0)} + N\upchi _{(0,\infty )}\). Then, given any \(a< 0 < b\), we have

$$\begin{aligned} \frac{1}{b-a}\int _a^b w(x)\,dx = \frac{|a| + Nb}{b - a} = \frac{Nb + |a|}{b + |a|} \le N. \end{aligned}$$

Hence, \(Mw(x)\rightarrow N\) as \(x\rightarrow 0^-\). It follows that \([w]_{A_1} = N\). Define \(f(x) = \upchi _{(-2,-1)}\). Then \(\int _{\mathbb {R}} |f(x)|w(x)\,dx = 1\) and for \(x \in (0, \infty )\) we have \(Mf(x) \ge \frac{1}{x + 2}\). Therefore, for \(\lambda = \frac{N}{3}\),

$$\begin{aligned}{} & {} |\{x \in \mathbb {R}: w(x)Mf(x)> \lambda \}| \ge \left| \left\{ x \in \mathbb {R}: \frac{w(x)}{x + 2}>\frac{N}{3}\right\} \right| \\{} & {} \quad \ge \left| \left\{ x\in (0,\infty ): \frac{N}{x + 2}> \frac{N}{3}\right\} \right| \ge |\{x\in (0,\infty ): 3 > x + 2\}| = 1. \end{aligned}$$

Consequently,

$$\begin{aligned} \frac{N}{3} \le \sup _{\lambda> 0}\,\lambda |\{x\in \mathbb {R}: w(x)|Mf(x)|>\lambda \}| \le C_0 \int _\mathbb {R}|f(x)|w(x)\,dx = C_0, \end{aligned}$$

and so \(C_0 > rsim [w]_{A_1}\), as desired.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Uribe, D., Sweeting, B. Weighted weak-type inequalities for maximal operators and singular integrals. Rev Mat Complut (2024). https://doi.org/10.1007/s13163-024-00492-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13163-024-00492-7

Keywords

Mathematics Subject Classification

Navigation