Abstract
We consider a Dirichlet problem driven by the anisotropic (p, q)-Laplacian and with a reaction that has the competing effects of a singular term and of a parametric superlinear perturbation. Based on variational tools along with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter varies.
1 Introduction
Let \(\Omega \subseteq \mathbb {R}^N\) be a bounded domain with a \(C^2\)-boundary \(\partial \Omega \). In this paper, we study the following anisotropic Dirichlet problem

For \(r \in E_1\), where \(E_1\) is given by
we denote by \(\Delta _{r(\cdot )}\) the anisotropic r-Laplacian (or \(r(\cdot )\)-Laplacian) defined by
The differential operator in problem (P\(_\lambda \)) is the sum of two such operators. In the reaction, the right-hand side of (P\(_\lambda \)), we have the competing effects of two terms which are of different nature. One is the singular term \(s \rightarrow s^{-\eta (x)}\) for \(s>0\) with \(\eta \in C(\overline{\Omega })\) such that \(0<\eta (x)<1\) for all \(x\in \overline{\Omega }\). The other one is the parametric term \(s \rightarrow \lambda f(x,s)\) with \(\lambda >0\) being the parameter and \(f:\Omega \times \mathbb {R}\rightarrow \mathbb {R}\) is a Carathéodory function, that is, \(x\rightarrow f(x,s)\) is measurable for all \(s\in \mathbb {R}\) and \(s\rightarrow f(x,s)\) is continuous for a. a. \(x\in \Omega \). We assume that \(f(x,\cdot )\) exhibits \((p_+-1)\)-superlinear growth for a. a. \(x\in \Omega \) as \(s\rightarrow +\infty \) with \(p_+=\max _{x\in \overline{\Omega }}p(x)\). We are looking for positive solutions of problem (P\(_\lambda \)) and our aim is to determine how the set of positive solutions of (P\(_\lambda \)) changes as the parameter \(\lambda \) moves on the semiaxis \(\overset{\circ }{\mathbb {R}}_+=(0,+\infty )\).
The starting point of our work is the recent paper of Papageorgiou-Winkert [16] where the authors study a similar problem driven by the isotropic p-Laplacian. So, the differential operator in [16] is \((p-1)\)-homogeneous and this property is exploited in their arguments. In contrast here, the differential operator is both nonhomogeneous and anisotropic.
Anisotropic problems with competition phenomena in the source were recently investigated by Papageorgiou-Rădulescu-Repovš [11]. They studied concave-convex problems driven by the \(p(\cdot )\)-Laplacian plus an indefinite potential term. In their equation there is no singular term. In fact, the study of anisotropic singular problems is lagging behind. We are aware only the works of Byun-Ko [2] and Saoudi-Ghanmi [20] for Dirichlet as well as of Saoudi-Kratou-Alsadhan [21] for Neumann problems. All the aforementioned works deal with equations driven by the \(p(\cdot )\)-Laplacian.
We mention that equations driven by the sum of two differential operators of different nature arise often in the mathematical models of physical processes. We mention the works of Bahrouni-Rădulescu-Repovš [1] (transonic flow problems), Cherfils-Il\('\)yasov [3] (reaction diffusion systems) and Zhikov [26] (elasticity problems). Some recent regularity and multiplicity results can be found in the works of Ragusa-Tachikawa [19] and Papageorgiou-Zhang [17].
In this paper, under general conditions on the perturbation \(f:\Omega \times \mathbb {R}\rightarrow \mathbb {R}\) which are less restrictive than all the previous cases in the literature, we prove the existence of a critical parameter \(\lambda ^*>0\) such that
-
for every \(\lambda \in (0,\lambda ^*)\), problem (P\(_\lambda \)) has at least two positive smooth solutions;
-
for \(\lambda =\lambda ^*\), problem (P\(_\lambda \)) has at least one positive smooth solution;
-
for every \(\lambda >\lambda ^*\), problem (P\(_\lambda \)) has no positive solutions.
2 Preliminaries and hypotheses
The study of anisotropic equations uses Lebesgue and Sobolev spaces with variable exponents. A comprehensive presentation of the theory of such spaces can be found in the book of Diening-Harjulehto-Hästö-R\(\mathring{{u}}\)žička [4].
Recall that \(E_1=\{r\in C(\overline{\Omega }) \, : \, 1<\min _{x\in \overline{\Omega }} r(x) \}\). For any \(r\in E_1\) we define
Moreover, let \(M(\Omega )\) be the space of all measurable functions \(u:\Omega \rightarrow \mathbb {R}\). As usual, we identify two such functions when they differ only on a Lebesgue-null set. Then, given \(r \in E_1\), the variable exponent Lebesgue space \(L^{r(\cdot )}(\Omega )\) is defined as
We equip this space with the so-called Luxemburg norm defined by
Then \((L^{r(\cdot )}(\Omega ),\Vert \cdot \Vert _{r(\cdot )})\) is a separable and reflexive Banach space, in fact it is uniformly convex. Let \(r' \in E_1\) be the conjugate variable exponent to r, that is,
We know that \(L^{r(\cdot )}(\Omega )^*=L^{r'(\cdot )}(\Omega )\) and the following Hölder type inequality holds
for all \(u\in L^{r(\cdot )}(\Omega )\) and for all \(v \in L^{r'(\cdot )}(\Omega )\).
If \(r_1, r_2\in E_1\) and \(r_1(x) \le r_2(x)\) for all \(x\in \overline{\Omega }\), then we have that
The corresponding variable exponent Sobolev spaces can be defined in a natural way using the variable exponent Lebesgue spaces. So, if \(r \in E_1\), then the variable exponent Sobolev space \(W^{1,r(\cdot )}(\Omega )\) is defined by
Here the gradient \(\nabla u\) is understood in the weak sense. We equip \(W^{1,r(\cdot )}(\Omega )\) with the following norm
In what follows we write \(\Vert \nabla u\Vert _{r(\cdot )}= \Vert |\nabla u|\Vert _{r(\cdot )}\). Suppose that \(r \in E_1\) is Lipschitz continuous, that is, \(r_1 \in E_1 \cap C^{0,1}(\overline{\Omega })\). We define
The spaces \(W^{1,r(\cdot )}(\Omega )\) and \(W^{1,r(\cdot )}_0(\Omega )\) are both separable and reflexive, in fact uniformly convex Banach spaces. On the space \(W^{1,r(\cdot )}_0(\Omega )\) we have the Poincaré inequality, namely there exists \(c_0>0\) such that
Therefore, we can consider on \(W^{1,r(\cdot )}_0(\Omega )\) the equivalent norm
For \(r \in E_1\) we introduce the critical Sobolev variable exponent \(r^*\) defined by
Suppose that \(r \in E_1 \cap C^{0,1}(\overline{\Omega })\), \(q \in E_1\), \(q_+<N\) and \(1 <q(x) \le r^*(x)\) for all \(x\in \overline{\Omega }\). Then we have
Similarly, if \(1<q(x) < r^*(x)\) for all \(x\in \overline{\Omega }\), we have
In the study of the variable exponent spaces, the modular function is important, that is, for \(r\in E_1\),
As before we write \(\varrho _{r(\cdot )}(\nabla u)=\varrho _{r(\cdot )}(|\nabla u|)\). The importance of this function comes from the fact that it is closely related to the norm of the space. This is evident in the next proposition.
Proposition 2.1
If \(r\in E_1\), then we have the following assertions:
-
(a)
\(\Vert u\Vert _{r(\cdot )}=\lambda \quad \Longleftrightarrow \quad \varrho _{r(\cdot )}\left( \frac{u}{\lambda }\right) =1\) for all \(u \in L^{r(\cdot )}(\Omega )\) with \(u\ne 0\);
-
(b)
\(\Vert u\Vert _{r(\cdot )}<1\) (resp. \(=1\), \(>1\)) \(\quad \Longleftrightarrow \quad \varrho _{r(\cdot )}(u)<1\) (resp. \(=1\), \(>1\));
-
(c)
\(\Vert u\Vert _{r(\cdot )}<1\) \(\quad \Longrightarrow \quad \) \(\Vert u\Vert _{r(\cdot )}^{r_+} \le \varrho _{r(\cdot )}(u) \le \Vert u\Vert _{r(\cdot )}^{r_-}\);
-
(d)
\(\Vert u\Vert _{r(\cdot )}>1\) \(\quad \Longrightarrow \quad \) \(\Vert u\Vert _{r(\cdot )}^{r_-} \le \varrho _{r(\cdot )}(u) \le \Vert u\Vert _{r(\cdot )}^{r_+}\);
-
(e)
\(\Vert u_n\Vert _{r(\cdot )} \rightarrow 0 \quad \Longleftrightarrow \quad \varrho _{r(\cdot )}(u_n)\rightarrow 0\);
-
(f)
\(\Vert u_n\Vert _{r(\cdot )}\rightarrow +\infty \quad \Longleftrightarrow \quad \varrho _{r(\cdot )}(u_n)\rightarrow +\infty \).
We know that for \(r\in E_1\cap C^{0,1}(\overline{\Omega })\), we have
Then we can introduce the nonlinear map \(A_{r(\cdot )}:W^{1,r(\cdot )}_0(\Omega )\rightarrow W^{-1,r'(\cdot )}(\Omega )\) defined by
This map has the following properties, see, for example Gasiński-Papageorgiou [7, Proposition 2.5] and Rădulescu-Repovš [18, p. 40].
Proposition 2.2
The operator \(A_{r(\cdot )}:W^{1,r(\cdot )}_0(\Omega )\rightarrow W^{-1,r'(\cdot )}(\Omega )\) is bounded (so it maps bounded sets to bounded sets), continuous, strictly monotone (which implies it is also maximal monotone) and of type \({{\,\mathrm{S}\,}}_+\), that is,
imply \(u_n\rightarrow u\) in \(W^{1,r(\cdot )}_0(\Omega )\).
Another space that we will use as a result of the anisotropic regularity theory is the Banach space
This is an ordered Banach space with positive (order) cone
This cone has a nonempty interior given by
where \(\frac{\partial u}{\partial n}=\nabla u \cdot n\) with n being the outward unit normal on \(\partial \Omega \).
Let \(h_1,h_2\in M(\Omega )\). We write \(h_1 \preceq h_2\) if and only if \(0<c_K\le h_2(x)- h_1(x)\) for a. a. \(x\in K\) and for all compact sets \(K\subseteq \Omega \). It is clear that if \(h_1,h_2\in C(\Omega )\) and \(h_1(x)< h_2(x)\) for all \(x\in \Omega \), then \(h_1 \preceq h_2\). From Papageorgiou-Rădulescu-Repovš [11, Proposition 2.4] and Papageorgiou-Rădulescu-Repovš [13, Propositions 6 and 7], we have the following comparison principles. In what follows, let \(p,q \in E_1\cap C^{0,1}(\overline{\Omega })\) with \(q(x)<p(x)\) for all \(x\in \overline{\Omega }\) and \(\eta \in C(\overline{\Omega })\) with \(0<\eta (x) <1\) for all \(x\in \overline{\Omega }\).
Proposition 2.3
-
(a)
If \(\hat{\xi } \in L^{\infty }(\Omega )\), \(\hat{\xi }(x) \ge 0\) for a. a. \(x\in \Omega \), \(h_1, h_2\in L^{\infty }(\Omega )\), \(h_1\preceq h_2\), \(u\in C^1_0(\overline{\Omega })_+\), \(u>0\) for all \(x\in \Omega \), \(v\in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) and
$$\begin{aligned} -\Delta _{p(\cdot )}u-\Delta _{q(\cdot )}u+\hat{\xi } (x) u^{p(x)-1}-u^{-\eta (x)}=h_1(x)&\text { in }\Omega ,\\ -\Delta _{p(\cdot )}v-\Delta _{q(\cdot )}v+\hat{\xi } (x) v^{p(x)-1}-v^{-\eta (x)}=h_2(x)&\text { in }\Omega , \end{aligned}$$then \(v-u \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \).
-
(b)
If \(\hat{\xi } \in L^{\infty }(\Omega )\), \(\hat{\xi } \ge 0\) for a. a. \(x\in \Omega \), \(h_1, h_2\in L^{\infty }(\Omega )\), \(0<{\hat{c}}\le h_2(x)-h_1(x)\) for a. a. \(x\in \Omega \), \(u,v\in C^1(\overline{\Omega })\setminus \{0\}\), \(u(x) \le v(x)\) for all \(x\in \Omega \), \(v\in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) and
$$\begin{aligned} -\Delta _{p(\cdot )}u-\Delta _{q(\cdot )}u+\hat{\xi } (x) u^{p(x)-1}-u^{-\eta (x)}=h_1(x)&\text { in }\Omega ,\\ -\Delta _{p(\cdot )}v-\Delta _{q(\cdot )}v+\hat{\xi } (x) v^{p(x)-1}-v^{-\eta (x)}=h_2(x)&\text { in }\Omega , \end{aligned}$$then \(u(x)<v(x)\) for all \(x\in \Omega \).
Remark 2.4
Note that in part (a) of Proposition 2.3 we have by the weak comparison principle that \(u \le v\), see Tolksdorf [24].
If \(u,v\in W^{1,p(\cdot )}_0(\Omega )\) with \(u\le v\), then we define
In what follows we will denote by \(\Vert \cdot \Vert \) the norm of the Sobolev space \(W^{1,p(\cdot )}_0(\Omega )\). By the Poincaré inequality we have
Suppose that X is a Banach space and let \(\varphi \in C^1(X)\). We denote the critical set of \(\varphi \) by
Moreover, we say that \(\varphi \) satisfies the “Cerami condition”, C-condition for short, if every sequence \(\{u_n\}_{n\in \mathbb {N}}\subseteq X\) such that \(\{\varphi (u_n)\}_{n\in \mathbb {N}}\subseteq \mathbb {R}\) is bounded and
admits a strongly convergent subsequence. This is a compactness-type condition on the functional \(\varphi \) which compensates for the fact that the ambient space X need not be locally compact being in general infinite dimensional. Applying this condition, one can prove a deformation theorem from which the minimax theorems for the critical values of \(\varphi \) follow. We refer to Papageorgiou-Rădulescu-Repovš [12, Chapter 5] and Struwe [22, Chapter II].
Given \(s\in (1,+\infty )\) we denote by \(s'\in (1,+\infty )\) the conjugate exponent defined by
Furthermore, if \(f:\Omega \times \mathbb {R}\rightarrow \mathbb {R}\) is a measurable function, then we denote by \(N_f\) the Nemytskii (also called superposition) operator corresponding to f, that is,
Note that \(x\rightarrow f(x,u(x))\) is measurable. We know that if \(f:\Omega \times \mathbb {R}\rightarrow \mathbb {R}\) is a Carathéodory function, then \(f(\cdot ,\cdot )\) is jointly measurable, see Papageorgiou-Winkert [15, p. 106].
Now we are in the position to introduce our hypotheses on the data of problem (P\(_\lambda \)).
- H\(_0\)::
-
\(p,q \in E_1\cap C^{0,1}(\overline{\Omega })\), \(\eta \in C(\overline{\Omega })\), \(q(x)<p(x)\), \(0<\eta (x)<1\) for all \(x\in \overline{\Omega }\), \(p_-<N\).
- H\(_1\)::
-
\(f:\Omega \times \mathbb {R}\rightarrow \mathbb {R}\) is a Carathéodory function such that \(f(x,0)=0\) for a. a. \(x\in \Omega \) and
-
(i)
there exists \(a \in L^{\infty }(\Omega )\) such that
$$\begin{aligned} 0\le f(x,s) \le a(x) \left[ 1+s^{r-1}\right] \end{aligned}$$for a. a. \(x\in \Omega \), for all \(s\ge 0\) and with \(p_+<r<p_-^*\), where ’
$$\begin{aligned} p_-^*=\frac{Np_-}{N-p_-}; \end{aligned}$$ -
(ii)
if \(F(x,s)=\displaystyle \int _0^s f(x,t)\,dt\), then
$$\begin{aligned} \lim _{s\rightarrow +\infty } \frac{F(x,s)}{s^{p_+}}=+\infty \quad \text {uniformly for a. a. }x\in \Omega ; \end{aligned}$$ -
(iii)
there exists a function \(\tau \in C(\overline{\Omega })\) such that
$$\begin{aligned} \tau (x) \in \left( \left( r-p_-\right) \frac{N}{p_-}, p^*(x) \right) \quad \text { for all }x\in \overline{\Omega }\end{aligned}$$and
$$\begin{aligned} 0<\gamma _0 \le \liminf _{s\rightarrow +\infty } \frac{f(x,s)s-p_+F(x,s)}{s^{\tau (x)}} \quad \text {uniformly for a. a. }x\in \Omega ; \end{aligned}$$ -
(iv)
for every \(\rho >0\) there exists \(\hat{\xi }_\rho >0\) such that the function
$$\begin{aligned} s\rightarrow f(x,s)+\hat{\xi }_\rho s^{p(x)-1} \end{aligned}$$is nondecreasing on \([0,\rho ]\) for a. a. \(x\in \Omega \).
Remark 2.5
Since we are interested in positive solutions and all the hypotheses above concern the positive semiaxis \(\mathbb {R}_+=[0,+\infty )\), we may assume without any loss of generality that \(f(x,s)= 0\) for a. a. \(x\in \Omega \) and for all \(s \le 0\). Hypotheses H\(_1\)(ii), (iii) imply that \(f(x,\cdot )\) is \((p_+-1)\)-superlinear for a. a. \(x\in \Omega \). However, this superlinearity condition on \(f(x,\cdot )\) is not formulated by using the Ambrosetti-Rabinowitz condition which is common in the literature when dealing with superlinear problems, see Byun-Ko [2], Saoudi-Ghanmi [20] and Saoudi-Kratou-Alsadhan [21]. Here, instead of the Ambrosetti-Rabinowitz condition, we employ hypothesis H\(_1\)(iii) which is less restrictive and incorporates in our framework nonlinearities with “slower” growth near \(+\infty \). For example, consider the functions
with \(r_1\in E_1\), \(r_1(x) \le p(x)\) for all \(x\in \overline{\Omega }\) and
with \(\mu , r_2\in E_1\) and \(r_2(x) \le p(x)\) for all \(x\in \overline{\Omega }\). These functions satisfy hypotheses H\(_1\), but fail to satisfy the Ambrosetti-Rabinowitz condition, see, for example, Gasiński-Papageorgiou [7].
The difficulty that we encounter when we study a singular problem is that the energy (Euler) functional of the problem is not \(C^1\) because of the presence of the singular term. Hence, we cannot use the results of critical point theory. We need to find a way to bypass the singularity and deal with \(C^1\)-functionals. In the next section, we examine a purely singular problem and the solution of this problem will help us in bypassing the singularity.
3 An auxiliary purely singular problem
In this section we deal with the following purely singular anisotropic (p, q)-equation
Proposition 3.1
If hypotheses H\(_0\) hold, then problem (3.1) admits a unique position solution \(\overline{u}\in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \).
Proof
Let \(g \in L^{p(\cdot )}(\Omega )\) and let \(0 < \varepsilon \le 1\). We consider the following Dirichlet problem
Let \(V:W^{1,p(\cdot )}_0(\Omega )\rightarrow W^{1,p(\cdot )}_0(\Omega )^*=W^{-1,p'(\cdot )}(\Omega )\) be the operator defined by
This map is continuous and strictly monotone, see Proposition 2.2, hence maximal monotone as well. It is also coercive, see Proposition 2.1. Therefore, it is surjective, see Papageorgiou-Rădulescu-Repovš [12, p. 135]. Since \([|g(\cdot )|+\varepsilon ]^{-\eta (\cdot )}\in L^{\infty }(\Omega )\), there exists \(u_\varepsilon \in W^{1,p(\cdot )}_0(\Omega ), u_\varepsilon \ge 0, u_\varepsilon \ne 0\) such that
The strict monotonicity of V implies the uniqueness of \(u_\varepsilon \). Thus, we can define the map \(\beta :L^{p(\cdot )}(\Omega )\rightarrow L^{p(\cdot )}(\Omega )\) by setting
Recall that \(W^{1,p(\cdot )}_0(\Omega ) \hookrightarrow L^{p(\cdot )}(\Omega )\) is compactly embedded. We claim that the map \(\beta \) is continuous. So, let \(g_n\rightarrow g\) in \(L^{p(\cdot )}(\Omega )\) and let \(u_\varepsilon ^n=\beta (g_n)\) with \(n\in \mathbb {N}\). We have
for all \(h\in W^{1,p(\cdot )}_0(\Omega )\) and for all \(n\in \mathbb {N}\).
We choose \(h=u_\varepsilon ^{n}\in W^{1,p(\cdot )}_0(\Omega )\) in (3.2) and obtain
which by Proposition 2.1 implies that
So, we may assume that
Now we choose \(h= u_\varepsilon ^n-{\tilde{u}}_\varepsilon \in W^{1,p(\cdot )}_0(\Omega )\) in (3.2), pass to the limit as \(n\rightarrow \infty \) and apply (3.3) which results in
Since \(A_{q(\cdot )}(\cdot )\) is monotone, we have
Applying (3.3) gives
and so, by Proposition 2.2,
Passing to the limit in (3.2) as \(n\rightarrow \infty \) and using (3.4) yields
for all \(h\in W^{1,p(\cdot )}_0(\Omega )\). Hence, \({\tilde{u}}_\varepsilon =\beta (g)\).
So, for the original sequence, we have
which shows that \(\beta \) is continuous.
From the argument above and recalling that \(W^{1,p(\cdot )}_0(\Omega ) \hookrightarrow L^{p(\cdot )}(\Omega )\) compactly, we see that \(\overline{\beta (L^{p(\cdot )}(\Omega )} \subseteq L^{p(\cdot )}(\Omega )\) is compact. So, by the Schauder-Tychonov fixed point theorem, see Papageorgiou-Rădulescu-Repovš [12, p. 298] we can find \({\hat{u}}_\varepsilon \in W^{1,p(\cdot )}_0(\Omega )\) such that \(\beta ({\hat{u}}_\varepsilon )={\hat{u}}_\varepsilon \).
From Fan-Zhao [5], see also Gasiński-Papageorgiou [7] and Marino-Winkert [10], we have that \({\hat{u}}_\varepsilon \in L^{\infty }(\Omega )\). Then, from Tan-Fang [23, Corollary 3.1], we have \({\hat{u}}_\varepsilon \in C^1_0(\overline{\Omega })\setminus \{0\}\). Finally, the anisotropic maximum principle of Zhang [25], see also Papageorgiou-Vetro-Vetro [14], implies that \({\hat{u}}_\varepsilon \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \).
Claim: If \(0<\varepsilon '\le \varepsilon \), then \({\hat{u}}_\varepsilon \le {\hat{u}}_{\varepsilon '}\). We have
We introduce the Carathéodory function \(k_\varepsilon :\Omega \times \mathbb {R}\rightarrow \mathbb {R}\) defined by
We set \(K_\varepsilon (x,s)=\int ^s_0 k_\varepsilon (x,t)\,dt\) and consider the \(C^1\)-functional \(J_\varepsilon :W^{1,p(\cdot )}_0(\Omega )\rightarrow \mathbb {R}\) defined by
for all \(u \in W^{1,p(\cdot )}_0(\Omega )\). From (3.6) it is clear that \(J_\varepsilon :W^{1,p(\cdot )}_0(\Omega )\rightarrow \mathbb {R}\) is coercive and by the compact embedding \(W^{1,p(\cdot )}_0(\Omega )\hookrightarrow L^{r}(\Omega )\) we know that it is also sequentially weakly lower semicontinuous. Therefore, by the Weierstraß-Tonelli theorem, there exists \({\hat{u}}_\varepsilon ^*\in W^{1,p(\cdot )}_0(\Omega )\) such that
Let \(u\in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) and choose \(t \in (0,1)\) small enough so that \(tu \le {\hat{u}}_{\varepsilon '}\), recall that \( {\hat{u}}_{\varepsilon '}\in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) and use Proposition 4.1.22 of Papageorgiou-Rădulescu-Repovš [12]. Then, by (3.6), we obtain
for some \(c_1=c_1(u)>0\), \(c_2=c_2(u)>0\) and \(t\in (0,1)\). Choosing \(t \in (0,1)\) even smaller if necessary, we see that
since \(1-\eta _-<1<q_-\). Then, by (3.7), because \({\hat{u}}_\varepsilon ^*\in W^{1,p(\cdot )}_0(\Omega )\) is the global minimizer of \(J_\varepsilon \), we conclude that
and so \({\hat{u}}_\varepsilon ^*\ne 0\).
From (3.7) we have \(J'_\varepsilon \left( {\hat{u}}_\varepsilon ^*\right) =0\) which means
for all \(h\in W^{1,p(\cdot )}_0(\Omega )\). Testing (3.8) with \(h=-\left( {\hat{u}}_\varepsilon ^*\right) ^-\in W^{1,p(\cdot )}_0(\Omega )\) we obtain
because of (3.6) which by Proposition 2.1 implies that
Now we choose \(h= \left( {\hat{u}}_\varepsilon ^*-{\hat{u}}_{\varepsilon '}\right) ^+ \in W^{1,p(\cdot )}_0(\Omega )\) in (3.8). Applying (3.6) and (3.5) gives
Hence, \({\hat{u}}_\varepsilon ^* \le {\hat{u}}_{\varepsilon '}\). So we have proved that
From (3.9), (3.6), (3.8) and the first part of the proof we infer that \({\hat{u}}_\varepsilon ^*={\hat{u}}_{\varepsilon '}\) and so, by (3.9), \({\hat{u}}_\varepsilon \le {\hat{u}}_{\varepsilon '}\). This proves the Claim.
Next we will let \(\varepsilon \rightarrow 0^+\) to produce a solution of the purely singular problem (3.1). To this end, let \(\varepsilon _n\rightarrow 0^+\) and set \({\hat{u}}_n={\hat{u}}_{\varepsilon _n}\) for all \(n \in \mathbb {N}\). We have
for all \(h \in W^{1,p(\cdot )}_0(\Omega )\) and for all \(n \in \mathbb {N}\). Choosing \(h= {\hat{u}}_n\in W^{1,p(\cdot )}_0(\Omega )\) leads to
Therefore, \(\{{\hat{u}}_n\}_{n\in \mathbb {N}}\subseteq W^{1,p(\cdot )}_0(\Omega )\) is bounded.
By passing to an appropriate subsequence if necessary, we may assume that
Now we choose \(h= {\hat{u}}_n-\overline{u}\in W^{1,p(\cdot )}_0(\Omega )\). This yields
due to the Claim.
Let \({\hat{d}}(x)={{\,\mathrm{dist}\,}}(x,\partial \Omega )\) for all \(x\in \overline{\Omega }\). Using Lemma 14.16 of Gilbarg-Trudinger [8, p. 355] we have that \({\hat{d}}\in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \). We can find \(c_3>0\) such that \(c_3{\hat{d}} \le {\hat{u}}_1\), see Papageorgiou-Rădulescu-Repovš [11, p. 274]. Then we have for all \(h \in W^{1,p(\cdot )}_0(\Omega )\) that
for some \(c_4,c_5>0\). Here we used the anisotropic Hardy inequality of Harjulehto-Hästö-Koskenoja [6]. From Marino-Winkert [10] (see also Ragusa-Tachikawa [19]) we have that \(\{{\hat{u}}_n\}_{n\in \mathbb {N}}\subseteq L^{\infty }(\Omega )\) is bounded. Moreover by the lemma and its proof of Lazer-McKenna [9] we know that \({\hat{u}}_1^{-\eta (\cdot )}\in L^{1}(\Omega )\). So, from (3.11) and the dominated convergence theorem, it follows that
This implies
which by the monotonicity of \(A_{q(\cdot )}\) and the \({{\,\mathrm{S}\,}}_+\)-property of \(A_{p(\cdot )}\) (see Proposition 2.2 and the first part of the proof) leads to
So, if we pass to the limit in (3.10) as \(n\rightarrow \infty \) and use the Lebesgue dominated convergence theorem, we then obtain
Since \({\hat{u}}_1\le \overline{u}\), we see that \(\overline{u}\in W^{1,p(\cdot )}_0(\Omega )\) is a positive solution of (3.1). From Marino-Winkert [10] we know that \(\overline{u} \in L^{\infty }(\Omega )\) and so we conclude that \(\overline{u} \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \), see Zhang [25] and (3.12).
Finally, note that the function \(\overset{\circ }{\mathbb {R}}_+\ni s \rightarrow s^{-\eta (x)}\) is strictly decreasing. Therefore, the positive solution \(\overline{u}\in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) is unique. \(\square \)
In the next section we will use this solution to bypass the singularity and deal with \(C^1\)-functionals on which we can apply the results of critical point theory.
4 Positive solutions
We introduce the following two sets
Proposition 4.1
If hypotheses H\(_0\) and H\(_1\) hold, then \({\mathcal {L}}\ne \emptyset \).
Proof
Let \(\overline{u} \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) be the unique positive solution of problem (3.1), see Proposition 3.1. By the anisotropic Hardy inequality, see Harjulehto-Hästö-Koskenoja [6], we know that \(\overline{u}^{-\eta (\cdot )}h\in L^{1}(\Omega )\) for all \(h\in W^{1,p(\cdot )}_0(\Omega )\). Hence, \(\overline{u}^{-\eta (\cdot )}\in W^{1,p'(\cdot )}(\Omega )=W^{1,p(\cdot )}_0(\Omega )^*\).
We consider the following auxiliary Dirichlet problem
As in the proof of Proposition 3.1, exploiting the surjectivity and the strict monotonicity of the operator V, we infer that problem (4.1) admits a unique positive solution \({\tilde{u}} \in W^{1,p(\cdot )}_0(\Omega )\).
Since \(\overline{u}^{-\eta (\cdot )}\le c_6 {\hat{d}}^{-\eta (\cdot )}\) for some \(c_6>0\), from Theorem B.1 of Saoudi-Ghanmi [20] we have
From the weak comparison principle, see Tolksdorf [24], we have that
Let \(\lambda _0 =\frac{1}{\Vert N_f({\tilde{u}})\Vert _\infty }\), see hypothesis H\(_1\)(i). For \(\lambda \in (0,\lambda _0]\) we have that
Applying (4.2) and (4.3) we get
We introduce the Carathéodory function \(i_\lambda :\Omega \times \overset{\circ }{\mathbb {R}}_+\rightarrow \overset{\circ }{\mathbb {R}}_+\) defined by
We set \(I_\lambda (x,s)=\int ^s_0i_\lambda (x,t)\,dt\) and consider the \(C^1\)-functional \(\psi _\lambda :W^{1,p(\cdot )}_0(\Omega )\rightarrow \mathbb {R}\) defined by
for all \(u \in W^{1,p(\cdot )}_0(\Omega )\). Evidently, \(\psi _\lambda \) is coercive due to (4.5) and it is sequentially weakly lower semicontinuous. So, we can find \(u_\lambda \in W^{1,p(\cdot )}_0(\Omega )\) such that
From this we know that \(\psi '_\lambda (u_\lambda )=0\) and so,
for all \(h \in W^{1,p(\cdot )}_0(\Omega )\). First we choose \(h=\left( \overline{u}-u_\lambda \right) ^+ \in W^{1,p(\cdot )}_0(\Omega )\) in (4.6). Then, by (4.5), \(f \ge 0\) and Proposition 3.1 it follows that
Therefore, \(\overline{u} \le u_\lambda \).
Next, we test (4.6) with \(h=\left( u_\lambda -{\tilde{u}}\right) ^+ \in W^{1,p(\cdot )}_0(\Omega )\). As before, by (4.5) and (4.4), we have
Hence, \(u_\lambda \le {\tilde{u}}\). So, we have proved that
Then, from (4.7), (4.5) and (4.6), it follows that
Thus, \(\left( 0,\lambda _0\right] \subseteq {\mathcal {L}}\ne \emptyset \). \(\square \)
We want to determine the regularity of the elements of the solution set \({\mathcal {S}}_\lambda \). To this end, we first establish a lower bound for the elements of \({\mathcal {S}}_\lambda \).
Proposition 4.2
If hypotheses H\(_0\), H\(_1\) hold and \(\lambda \in {\mathcal {L}}\), then \(\overline{u}\le u\) for all \(u \in {\mathcal {S}}_\lambda \).
Proof
Let \(u \in {\mathcal {S}}_\lambda \). We introduce the Carathéodory function \(b:\Omega \times \overset{\circ }{\mathbb {R}}_+ \rightarrow \overset{\circ }{\mathbb {R}}_+\) defined by
We consider the following Dirichlet problem
As in the proof of Proposition 3.1, using approximations and fixed point theory, we can show that problem (4.9) has a positive solution \(\overline{u}_0 \in W^{1,p(\cdot )}_0(\Omega )\). Applying (4.8), \(f\ge 0\) and \(u \in {\mathcal {S}}_\lambda \) yields
Therefore, we have
Then, (4.10), (4.8), (4.9) and Proposition 3.1 imply that
This shows that \(\overline{u} \le u\) for all \(u \in {\mathcal {S}}_\lambda \), see (4.10). \(\square \)
Using this lower bound and the anisotropic regularity theory of Saoudi-Ghanmi [20], we can have the regularity properties of the elements of \({\mathcal {S}}_\lambda \).
Proposition 4.3
If hypotheses H\(_0\), H\(_1\) hold and \(\lambda \in {\mathcal {L}}\), then \(\emptyset \ne {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \).
Next we prove a structural property of \({\mathcal {L}}\), namely, we show that \({\mathcal {L}}\) is connected, so an interval.
Proposition 4.4
If hypotheses H\(_0\), H\(_1\) hold, \(\lambda \in {\mathcal {L}}\) and \(\mu \in (0,\lambda )\), then \(\mu \in {\mathcal {L}}\).
Proof
Let \(u_\lambda \in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \), see Proposition 4.3. We introduce the
Carathéodory function \(e_\mu :\Omega \times \overset{\circ }{\mathbb {R}}_+ \rightarrow \overset{\circ }{\mathbb {R}}_+\) defined by
We set \(E_\mu (x,s)=\int ^s_0e_\mu (x,t)\,dt\) and consider the \(C^1\)-functional \(\sigma _\mu :W^{1,p(\cdot )}_0(\Omega )\rightarrow \mathbb {R}\) defined by
for all \(u \in W^{1,p(\cdot )}_0(\Omega )\). It is clear that \(\sigma _\mu \) is coercive because of (4.11) and it is sequentially weakly lower semicontinuous. So, there exists \(u_\mu \in W^{1,p(\cdot )}_0(\Omega )\) such that
That means \(\sigma '_\mu (u_\mu )=0\) and so,
for all \(h \in W^{1,p(\cdot )}_0(\Omega )\). If we choose \(h=\left( \overline{u}-u_\mu \right) ^+\in W^{1,p(\cdot )}_0(\Omega )\) in (4.12) we can show that \(\overline{u} \le u_\mu \), see the proof of Proposition 4.1. Next, we choose \(h=\left( u_\mu -u_\lambda \right) ^+\in W^{1,p(\cdot )}_0(\Omega )\) in (4.12). Then, by (4.11), \(f \ge 0\), \(\mu <\lambda \) and \(u_\lambda \in {\mathcal {S}}_\lambda \), we obtain
Hence, \(u_\mu \le u_\lambda \). Therefore we have
From (4.13), (4.11) and (4.12) it follows that
\(\square \)
From Proposition 4.4 and its proof we have the following corollary.
Corollary 4.5
If hypotheses H\(_0\), H\(_1\) hold and if \(\lambda \in {\mathcal {L}}, u_\lambda \in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) and \(0<\mu <\lambda \), then \(\mu \in {\mathcal {L}}\) and there exists \(u_\mu \in {\mathcal {S}}_\mu \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) such that \(u_\mu \le u_\lambda \).
In the next proposition we are going to improve the assertion of Corollary 4.5.
Proposition 4.6
If hypotheses H\(_0\), H\(_1\) hold and if \(\lambda \in {\mathcal {L}}, u_\lambda \in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) and \(0<\mu <\lambda \), then \(\mu \in {\mathcal {L}}\) and there exists \(u_\mu \in {\mathcal {S}}_\mu \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) such that
Proof
From Corollary 4.5 we already know that \(\mu \in {\mathcal {L}}\) and that there exists \(u_\mu \in {\mathcal {S}}_\mu \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) such that
Let \(\rho =\Vert u_\lambda \Vert _\infty \) and let \(\hat{\xi }_\rho >0\) be as postulated by hypothesis H\(_1\)(iv). Applying \(u_\mu \in {\mathcal {S}}_\mu \), (4.14), hypothesis H\(_1\)(iv), \(f \ge 0\), \(\mu <\lambda \) and \(u_\lambda \in {\mathcal {S}}_\lambda \) gives
Note that since \(u_\mu \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \), \(f \ge 0\) and \(\mu <\lambda \), we have
Hence, from (4.15) and Proposition 2.3(a), we infer that
\(\square \)
We set \(\lambda ^*=\sup {\mathcal {L}}\).
Proposition 4.7
If hypotheses H\(_0\), H\(_1\) hold, then \(\lambda ^*<+\infty \).
Proof
Hypotheses H\(_1\)(i), (ii) and (iii) imply that we can find \(\hat{\lambda }>0\) such that
Let \(\lambda >\hat{\lambda }\) and suppose that \(\lambda \in {\mathcal {L}}\). We can find \(u\in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) and from Proposition 4.2 we have \(\overline{u} \le u\). Let \(\Omega _0\subseteq \Omega \) be an open subset with \(C^2\)-boundary, \(\overline{\Omega }_0\subseteq \Omega \) and \(m_0=\min _{x\in \overline{\Omega }_0}u(x) \le 1\). Note that since \(u \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) we have \(0<m_0\). Let \(\delta \in (0,1)\) be small and set \(m_0^\delta =m_0+\delta \). Note that
Let \(\rho =\Vert u\Vert _\infty \) and let \(\hat{\xi }_\rho >0\) be as postulated by hypothesis H\(_1\)(iv). Then, by applying (4.17), (4.16), \(m_0\le 1\), \(\delta >0\) small enough, \(f \ge 0\) and \(\lambda >\hat{\lambda }\) we obtain
Then, by Proposition 2.3(b), we get \(m_0^\delta <u(x)\) for all \(x \in \Omega _0\) and for all \(\delta \in (0,1)\) small enough. This contradicts the definition of \(m_0\). Therefore, \(\lambda ^* \le \hat{\lambda }<+\infty \). \(\square \)
Next we are going to prove that we have multiple solutions for all \(\lambda \in (0,\lambda ^*)\).
Proposition 4.8
If hypotheses H\(_0\), H\(_1\) hold and \(\lambda \in (0,\lambda ^*)\), then problem (P\(_\lambda \)) has at least two positive solutions
Proof
Let \(0<\lambda<\vartheta <\lambda ^{*}\). On account of Proposition 4.6 we can find \(u_\vartheta \in {\mathcal {S}}_\vartheta \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) and \(u_0 \in {\mathcal {S}}_\lambda \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) such that
Also from Proposition 4.2 we have
Let \(\rho =\Vert u_0\Vert _\infty \) and let \(\hat{\xi }_\rho >0\) be as postulated by hypothesis H\(_1\)(iv). Then, using \(f \ge 0\), (4.19), hypothesis H\(_1\)(iv) and \(u_0 \in {\mathcal {S}}_\lambda \), we obtain
Note that \(0 \preceq \hat{\xi }_\rho u_0^{p(x)-1}\) since \(u_0 \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \). So, from (4.20) and Proposition 2.3(a), we get that
From (4.18) and (4.21) it follows that
We introduce the Carathéodory function \(j_\lambda :\Omega \times \overset{\circ }{\mathbb {R}}_+\rightarrow \overset{\circ }{\mathbb {R}}_+\) defined by
Moreover, we introduce the truncation of \(j_\lambda (x,\cdot )\) at \(u_\vartheta (x)\), namely, the Carathéodory function \({\hat{j}}_\lambda :\Omega \times \overset{\circ }{\mathbb {R}}_+\rightarrow \overset{\circ }{\mathbb {R}}_+\) defined by
We set \(J_\lambda (x,s)=\int ^s_0 j_\lambda (x,t)\,dt\) and \({\hat{J}}_\lambda (x,s)=\int ^s_0 {\hat{j}}_\lambda (x,t)\,dt\) and consider the \(C^1\)-functionals \(w_{\lambda }, {\hat{w}}_\lambda :W^{1,p(\cdot )}_0(\Omega )\rightarrow \mathbb {R}\) defined by
for all \(u \in W^{1,p(\cdot )}_0(\Omega )\).
From (4.23) and (4.24) it is clear that
Moreover, applying (4.23) and (4.24), we can easily show that
On account of (4.24) and (4.26), we see that we may assume that
Otherwise we already have a second positive smooth solution for problem (P\(_\lambda \)) and so we are done, see (4.24) and (4.26).
From (4.24) we see that the functional \({\hat{w}}_\lambda :W^{1,p(\cdot )}_0(\Omega )\rightarrow \mathbb {R}\) is coercive and it is easy to check that it is sequentially weakly lower semicontinuous. Hence, its global minimizer \({\hat{u}}_0\in W^{1,p(\cdot )}_0(\Omega )\) exists, that is,
From (4.27) we conclude that \({\hat{u}}_0=u_0\). From (4.22) and (4.25) it follows that \(u_0\) is a local \(C^1_0(\overline{\Omega })\)-minimizer of \(w_\lambda \), Hence
see Tan-Fang [23] and Gasiński-Papageorgiou [7]. From (4.23) and (4.26) we see that we can assume that
Otherwise we already have an infinity of positive smooth solutions for problem (P\(_\lambda \)) and so we are done.
Then, from (4.28), (4.29) and Theorem 5.7.4 of Papageorgiou-Rădulescu-Repovš [12, p. 449] we know that there exists \(\rho \in (0,1)\) small such that
On account of hypothesis H\(_1\)(ii), if \(u \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \), then
In order to apply the mountain pass theorem we only need to show that the functional \(w_\lambda \) satisfies the C-condition.
Claim: \(w_\lambda \) fulfills the C-condition.
We consider the sequence \(\{u_n\}_{n\in \mathbb {N}}\subseteq W^{1,p(\cdot )}_0(\Omega )\) such that
From (4.33) we have
for all \(h\in W^{1,p(\cdot )}_0(\Omega )\) with \(\varepsilon _n\rightarrow 0^+\). Choosing \(h=-u_n^-\in W^{1,p(\cdot )}_0(\Omega )\) in (4.34), recalling that \(\overline{u}^{-\eta (\cdot )}h\in L^{1}(\Omega )\) for all \(h\in W^{1,p(\cdot )}_0(\Omega )\), see Harjulehto-Hästö-Koskenoja [6], and applying (4.23) leads to
which implies that
Now we choose \(h=u_n^+ \in W^{1,p(\cdot )}_0(\Omega )\) as test function in (4.34). This gives
Furthermore, from (4.32) and (4.35), we obtain
for some \(c_9>0\) and for all \(n \in \mathbb {N}\). This implies
We add (4.36) and (4.37) and obtain
which by (4.23) results in
for some \(c_{11}>0\) and for all \(n \in \mathbb {N}\).
Hypotheses H\(_1\)(i), (iii) imply the existence of \(\gamma _1 \in \left( 0,\gamma _0\right) \) and \(c_{12}>0\) such that
Using (4.39) in (4.38), we have
Hence, we see that
From hypothesis H\(_1\)(iii) we see that, without any loss of generality, we may assume that \(\tau (x)<r<p_-^*\) for all \(x\in \overline{\Omega }\). Hence, \(\tau _-<r<p_-^*\) and so we can find \(t \in (0,1)\) such that
Applying the interpolation inequality, see Papageorgiou-Winkert [15, p. 116], we have
Thus, due to (4.40),
Then, by the Sobolev embedding theorem, we obtain
We take \(h=u_n^+\in W^{1,p(\cdot )}_0(\Omega )\) in (4.34) as test function and get
which by (4.23) and (4.42) gives
for some \(c_{16}, c_{17}, c_{18}>0\) and for all \(n\in \mathbb {N}\).
From (4.41) we have
Therefore, from (4.43) and Proposition 2.1 it follows that
So, we may assume that
We choose \(h= u_n-u \in W^{1,p(\cdot )}_0(\Omega )\) in (4.34), pass to the limit as \(n\rightarrow \infty \) and apply (4.44). This yields
Note that \(A_{q(\cdot )}(\cdot )\) is monotone, so we have
Because of (4.44) we then derive
and so, by Proposition 2.2,
This proves the Claim.
Then, (4.30), (4.31) and the Claim permit us the use of the mountain pass theorem. So we can find \({\hat{u}}\in W^{1,p(\cdot )}_0(\Omega )\) such that
see (4.26), and
see (4.30). We conclude that \({\hat{u}} \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) is the second positive solution of (P\(_\lambda \)) for \(\lambda \in \left( 0,\lambda ^*\right) \) and \({\hat{u}}\ne u_0\). \(\square \)
It remains to decide whether the critical parameter value \(\lambda ^*>0\) is admissible.
Proposition 4.9
If hypotheses H\(_0\) and H\(_1\) hold, then \(\lambda ^* \in {\mathcal {L}}\).
Proof
Let \(\{\lambda _n\}_{n\in \mathbb {N}} \subseteq (0,\lambda ^*)\subseteq {\mathcal {L}}\) be such that \(\lambda _n\nearrow \lambda ^*\) as \(n \rightarrow \infty \). From the proof of Proposition 3.10 we know that we can find \(u_n \in {\mathcal {S}}_{\lambda _n} \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) such that
Applying (4.23), \(f \ge 0\) and Proposition 3.1 we obtain
for all \(n \in \mathbb {N}\). Furthermore, we have
for all \(h \in W^{1,p(\cdot )}_0(\Omega )\) and for all \(n \in \mathbb {N}\).
Using (4.45) and (4.46) and reasoning as in the Claim in the proof of Proposition 4.8, we obtain
see Proposition 4.2. Hence, \(u^* \in {\mathcal {S}}_{\lambda ^*} \subseteq {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) \) and so \(\lambda ^* \in {\mathcal {L}}\). \(\square \)
So, we have proved that
Summarizing our results we can state the following bifurcation-type result describing the changes in the set of positive solutions as the parameter moves on \(\overset{\circ }{\mathbb {R}}_+=(0,+\infty )\).
Theorem 4.10
If hypotheses H\(_0\) and H\(_1\) hold, then there exists \(\lambda ^*>0\) such that
-
(a)
for every \(\lambda \in (0,\lambda ^*)\), problem (P\(_\lambda \)) has at least two positive solutions
$$\begin{aligned} u_0, {\hat{u}} \in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) , \quad u_0\ne {\hat{u}}; \end{aligned}$$ -
(b)
for \(\lambda =\lambda ^*\), problem (P\(_\lambda \)) has at least one positive solution
$$\begin{aligned} u^*\in {{\,\mathrm{int}\,}}\left( C^1_0(\overline{\Omega })_+\right) ; \end{aligned}$$ -
(c)
for every \(\lambda >\lambda ^{*}\), problem (P\(_\lambda \)) has no positive solutions.
References
Bahrouni, A., Radulescu, V.D., Repovs, D.: Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves. Nonlinearity 32(7), 2481–2495 (2019)
Byun, S. S., Ko, E.: Global \(C^{1,\alpha }\) regularity and existence of multiple solutions for singular \(p(x)\)-Laplacian equations, Calc. Var. Partial Differential Equations 56 (2017), no. 5, Paper No. 76, 29 pp
Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian. Commun. Pure Appl. Anal. 4(1), 9–22 (2005)
Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents. Springer, Heidelberg (2011)
Fan, X., Zhao, D.: A class of De Giorgi type and Hölder continuity. Nonlinear Anal. 36(3), 295–318 (1999)
Harjulehto, P., Hästö, P., Koskenoja, M.: Hardy’s inequality in a variable exponent Sobolev space. Georgian Math. J. 12(3), 431–442 (2005)
Gasiński, L., Papageorgiou, N.S.: Anisotropic nonlinear Neumann problems. Calc. Var. Partial Differ. Equ. 42(3–4), 323–354 (2011)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)
Lazer, A.C., McKenna, P.J.: On a singular nonlinear elliptic boundary-value problem. Proc. Amer. Math. Soc. 111(3), 721–730 (1991)
Marino, G., Winkert, P.: \(L^\infty \)-bounds for general singular elliptic equations with convection term. Appl. Math. Lett. 107, 106410, 6 pp (2020)
Papageorgiou, N.S., Radulescu, V.D., Repovs, D.D.: Anisotropic equations with indefinite potential and competing nonlinearities. Nonlinear Anal. 201, 111861 (2020)
Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear Analysis – Theory and Methods. Springer, Cham (2019)
Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear nonhomogeneous singular problems, Calc. Var. Partial Differential Equations 59 (2020), no. 1, Paper No. 9, 31 pp
Papageorgiou, N.S., Vetro, C., Vetro, F.: Multiple solutions for parametric double phase Dirichlet problems. Commun. Contemp. Math. 23(4), 2050006 (2021)
Papageorgiou, N.S., Winkert, P.: Applied Nonlinear Functional Analysis. an Introduction. De Gruyter, Berlin (2018)
Papageorgiou, N.S., Winkert, P.: Singular \(p\)-Laplacian equations with superlinear perturbation. J. Diff. Equ. 266(2–3), 1462–1487 (2019)
Papageorgiou, N.S., Zhang, C.: Noncoercive resonant \((p,2)\)-equations with concave terms. Adv. Nonlinear Anal. 9(1), 228–249 (2020)
Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents. CRC Press, Boca Raton (2015)
Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2020)
Saoudi, K., Ghanmi, A.: A multiplicity results for a singular equation involving the \(p(x)\)-Laplace operator. Complex Var. Elliptic Equ. 62(5), 695–725 (2017)
Saoudi, K., Kratou, M., Alsadhan, S.: Multiplicity results for the \(p(x)\)-Laplacian equation with singular nonlinearities and nonlinear Neumann boundary condition, Int. J. Differ. Equ. 2016, Art. ID 3149482, 14 pp
Struwe, M.: Variational Methods. Springer-Verlag, Berlin, fourth edition (2008)
Tan, Z., Fang, F.: Orlicz-Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations. J. Math. Anal. Appl. 402(1), 348–370 (2013)
Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Comm. Partial Differ. Equ. 8(7), 773–817 (1983)
Zhang, Q.: A strong maximum principle for differential equations with nonstandard \(p(x)\)-growth conditions. J. Math. Anal. Appl. 312(1), 24–32 (2005)
Zhikov, V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. (N. Y.) 173(5), 463–570 (2011)
Acknowledgements
The authors wish to thank the two anonymous referees for their constructive remarks.
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Papageorgiou, N.S., Winkert, P. On a class of singular anisotropic (p, q)-equations. Rev Mat Complut 35, 545–571 (2022). https://doi.org/10.1007/s13163-021-00395-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13163-021-00395-x
Keywords
- Anisotropic (p, q)-Laplacian
- Singular term
- Superlinear perturbation
- Regularity theory
- Maximum principle
- Positive solutions
Mathematics Subject Classification
- 35J75