In this section we derive several versions of the \(L^p\) weighted Hardy inequalities.
Weighted \(L^p\)-Cafferelli-Kohn-Nirenberg type inequalities with boundary terms
We first present the following weighted \(L^p\)-Cafferelli–Kohn–Nirenberg type inequalities with boundary terms on the stratified Lie group \(\mathbb {G}\) and then discuss their consequences. The proof of Theorem 2.1 is analogous to the proof of Davies and Hinz [8], but is now carried out in the case of the stratified Lie group \(\mathbb {G}\). The boundary terms also give new addition to the Euclidean results in [8]. The classical Caffarelli–Kohn–Nirenberg inequalities in the Euclidean setting were obtained in [6].
Let \(\mathbb {G}\) be a stratified group with N being the dimension of the first stratum, and let V be a real-valued function in \(L_{loc}^1(\Omega )\) with partial derivatives of order up to 2 in \(L_{loc}^1(\Omega )\), and such that \({\mathcal {L}} V\) is of one sign. Then we have:
Theorem 2.1
Let \(\Omega \) be an admissible domain in the stratified group \({\mathbb {G}}\), and let V be a real-valued function such that \({\mathcal {L}} V<0\) holds a.e. in \(\Omega \). Then for any complex-valued \(u \in C^2(\Omega )\cap C^1({\overline{\Omega }})\), and all \(1<p<\infty \), we have the inequality
$$\begin{aligned} \left\| |{\mathcal {L}} V|^{\frac{1}{p}} u\right\| _{L^p(\Omega )}^p \le p \left\| \frac{|\nabla _{\mathbb {G}} V|}{|{\mathcal {L}} V|^{\frac{p-1}{p}}}|\nabla _{\mathbb {G}} u| \right\| _{L^p(\Omega )} \left\| |{\mathcal {L}}V|^{\frac{1}{p}} u \right\| _{L^p(\Omega )}^{p-1} -\int _{\partial \Omega } |u|^p\langle {\widetilde{\nabla }} V,dx\rangle . \end{aligned}$$
(2.1)
Note that if u vanishes on the boundary \(\partial \Omega \), then (2.1) extends the Davies and Hinz result [8] to the weighted \(L^p\)-Hardy type inequality on stratified groups:
$$\begin{aligned} \left\| |{\mathcal {L}} V|^{\frac{1}{p}} u\right\| _{L^p(\Omega )} \le p \left\| \frac{|\nabla _{\mathbb {G}} V|}{|{\mathcal {L}} V|^{\frac{p-1}{p}}}|\nabla _{\mathbb {G}} u| \right\| _{L^p(\Omega )}, \quad 1<p<\infty . \end{aligned}$$
(2.2)
Proof of Theorem 2.1
Let \(\upsilon _{\epsilon }:=(|u|^2 + \epsilon ^2)^{\frac{1}{2}}-\epsilon \). Then \(\upsilon _{\epsilon }^p \in C^2({\Omega }) \cap C^1({{\overline{\Omega }}})\) and using Green’s first formula (1.7) and the fact that \({\mathcal {L}} V < 0\) we get
$$\begin{aligned} \int _{\Omega }|{\mathcal {L}} V|\upsilon _{\epsilon }^p dx&= - \int _{\Omega } {\mathcal {L}} V \upsilon _{\epsilon }^p dx \\&= \int _{\Omega } ({\widetilde{\nabla }}V) \upsilon _{\epsilon }^p dx - \int _{\partial \Omega }\upsilon _{\epsilon }^p \langle {\widetilde{\nabla }} V,dx\rangle \\&= \int _{\Omega } \nabla _{\mathbb {G}} V \cdot \nabla _{\mathbb {G}} \upsilon _{\epsilon }^p dx - \int _{\partial \Omega }\upsilon _{\epsilon }^p \langle {\widetilde{\nabla }} V,dx\rangle \\&\le \int _{\Omega } |\nabla _{\mathbb {G}} V| |\nabla _{\mathbb {G}} \upsilon _{\epsilon }^p| dx - \int _{\partial \Omega }\upsilon _{\epsilon }^p \langle {\widetilde{\nabla }} V,dx\rangle \\&= p \int _{\Omega } \left( \frac{|\nabla _{\mathbb {G}} V|}{|{\mathcal {L}} V|^{\frac{p-1}{p}}}\right) |{\mathcal {L}} V|^{\frac{p-1}{p}} \upsilon _{\epsilon }^{p-1}|\nabla _{\mathbb {G}} \upsilon _{\epsilon }|dx- \int _{\partial \Omega }\upsilon _{\epsilon }^p \langle {\widetilde{\nabla }} V,dx\rangle , \end{aligned}$$
where \(({\widetilde{\nabla }}u)v = \nabla _{\mathbb {G}} u\cdot \nabla _{\mathbb {G}} v\). We have
$$\begin{aligned} \nabla _{\mathbb {G}} \upsilon _{\epsilon } = (|u|^2 +\epsilon ^2)^{-\frac{1}{2}} |u|\nabla _{\mathbb {G}} |u|, \end{aligned}$$
since \(0 \le \upsilon _{\epsilon } \le |u|\). Thus,
$$\begin{aligned} \upsilon _{\epsilon }^{p-1} |\nabla _{\mathbb {G}} \upsilon _{\epsilon }| \le |u|^{p-1}|\nabla _{\mathbb {G}}|u||. \end{aligned}$$
On the other hand, let \(u(x)=R(x)+iI(x)\), where R(x) and I(x) denote the real and imaginary parts of u. We can restrict to the set where \(u\ne 0\). Then we have
$$\begin{aligned} (\nabla _{\mathbb {G}} |u|)(x) = \frac{1}{|u|} (R(x)\nabla _{\mathbb {G}} R(x) + I(x)\nabla _{\mathbb {G}} I(x)) \quad \text {if} \quad u \ne 0. \end{aligned}$$
(2.3)
Since
$$\begin{aligned} \left| \frac{1}{|u|} (R\nabla _{\mathbb {G}} R+I \nabla _{\mathbb {G}} I)\right| ^2 \le |\nabla _{\mathbb {G}} R|^2 + |\nabla _{\mathbb {G}} I|^2, \end{aligned}$$
(2.4)
we get that \(|\nabla _{\mathbb {G}} |u||\le |\nabla _{\mathbb {G}} u|\) a.e. in \(\Omega \). Therefore,
$$\begin{aligned} \int _{\Omega }|{\mathcal {L}} V|\upsilon _{\epsilon }^p dx\le & {} p \int _{\Omega } \left( \frac{|\nabla _{\mathbb {G}} V|}{|{\mathcal {L}} V|^{\frac{p-1}{p}}} |\nabla _{\mathbb {G}} u|\right) |{\mathcal {L}} V|^{\frac{p-1}{p}}|u|^{p-1} dx- \int _{\partial \Omega }\upsilon _{\epsilon }^p \langle {\widetilde{\nabla }} V,dx\rangle \\\le & {} p \left( \int _{\Omega } \left( \frac{|\nabla _{\mathbb {G}} V|^p}{|{\mathcal {L}} V|^{(p-1)}} |\nabla _{\mathbb {G}} u|^p\right) dx \right) ^{\frac{1}{p}} \left( \int _{\Omega }|{\mathcal {L}} V||u|^p dx\right) ^{\frac{p-1}{p}}\\&- \int _{\partial \Omega }\upsilon _{\epsilon }^p \langle {\widetilde{\nabla }} V,dx\rangle , \end{aligned}$$
where we have used Hölder’s inequality in the last line. Thus, when \(\epsilon \rightarrow 0\), we obtain (2.1). \(\square \)
Consequences of theorem 2.1
As consequences of Theorem 2.1, we can derive the horizontal \(L^p\)-Caffarelli–Kohn–Nirenberg type inequality with the boundary term on the stratified group \(\mathbb {G}\) which also gives another proof of \(L^p\)-Hardy type inequality, and also yet another proof of the Badiale-Tarantello conjecture [3] (for another proof see e.g. [18] and references therein).
Horizontal \(L^p\)-Caffarelli–Kohn–Nirenberg inequalities with the boundary term
Corollary 2.2
Let \(\Omega \) be an admissible domain in a stratified group \(\mathbb {G}\) with \(N\ge 3\) being dimension of the first stratum, and let \(\alpha , \beta \in {\mathbb {R}}\). Then for all \(u \in C^2(\Omega \backslash \{x'=0\})\cap C^1({\overline{\Omega }} \backslash \{x'=0\})\), and any \(1<p<\infty \), we have
$$\begin{aligned}&\frac{|N-\gamma |}{p} \left\| \frac{u}{|x'|^{\frac{\gamma }{p}}}\right\| ^p_{L^p(\Omega )} \le \left\| \frac{\nabla _{\mathbb {G}} u}{|x'|^{\alpha }} \right\| _{L^p(\Omega )} \left\| \frac{u}{|x'|^{\frac{\beta }{p-1}}} \right\| ^{p-1}_{L^p(\Omega )} \nonumber \\&\quad -\frac{1}{p} \int _{\partial \Omega } |u|^p\langle {\widetilde{\nabla }} |x'|^{2-\gamma },dx\rangle , \end{aligned}$$
(2.5)
for \(2<\gamma <N\) with \(\gamma = \alpha +\beta +1, \) and where \(|\cdot |\) is the Euclidean norm on \({\mathbb {R}}^{N}\). In particular, if u vanishes on the boundary \(\partial \Omega \), we have
$$\begin{aligned} \frac{|N-\gamma |}{p} \left\| \frac{u}{|x'|^{\frac{\gamma }{p}}}\right\| ^p_{L^p(\Omega )} \le \left\| \frac{\nabla _{\mathbb {G}} u}{|x'|^{\alpha }} \right\| _{L^p(\Omega )} \left\| \frac{u}{|x'|^{\frac{\beta }{p-1}}} \right\| ^{p-1}_{L^p(\Omega )}. \end{aligned}$$
(2.6)
Proof of Corollary 2.2
To obtain (2.5) from (2.1) , we take \(V= |x'|^{2-\gamma }\). Then
$$\begin{aligned} |\nabla _{\mathbb {G}} V| = |2-\gamma ||x'|^{1-\gamma },\qquad |{\mathcal {L}} V| =|(2-\gamma )(N-\gamma )| |x'|^{-\gamma }, \end{aligned}$$
and observe that \({\mathcal {L}} V = (2-\gamma )(N-\gamma ) |x'|^{-\gamma }<0.\) To use (2.1) we calculate
$$\begin{aligned} \left\| |{\mathcal {L}} V|^{\frac{1}{p}} u\right\| _{L^p(\Omega )}^p= & {} |(2-\gamma )(N-\gamma )|\left\| \frac{u}{|x'|^{\frac{\gamma }{p}}} \right\| _{L^p(\Omega )}^p,\\ \left\| \frac{|\nabla _{\mathbb {G}} V|}{|{\mathcal {L}} V|^{\frac{p-1}{p}}} \nabla _{\mathbb {G}} u \right\| _{L^p(\Omega )}= & {} \frac{|2-\gamma |}{|(2-\gamma )(N-\gamma )|^{\frac{p-1}{p}}} \left\| \frac{|\nabla _{\mathbb {G}} u|}{|x'|^{\frac{\gamma -p}{p}}} \right\| _{L^p(\Omega )},\\ \left\| |{\mathcal {L}}V|^{\frac{1}{p}} u \right\| _{L^p(\Omega )}^{p-1}= & {} |(2-\gamma )(N-\gamma )|^{\frac{p-1}{p}}\left\| \frac{u}{|x'|^{\frac{\gamma }{p}}}\right\| _{L^p(\Omega )}^{p-1}. \end{aligned}$$
Thus, (2.1) implies
$$\begin{aligned} \frac{|N-\gamma |}{p}\left\| \frac{u}{|x'|^{\frac{\gamma }{p}}} \right\| _{L^p(\Omega )}^p \le \left\| \frac{\nabla _{\mathbb {G}} u}{|x'|^{\frac{\gamma -p}{p}}} \right\| _{L^p(\Omega )}\left\| \frac{u}{|x'|^{\frac{\gamma }{p}}}\right\| _{L^p(\Omega )}^{p-1} - \frac{1}{p}\int _{\partial \Omega } |u|^p\langle {\widetilde{\nabla }} |x'|^{2-\gamma },dx\rangle . \end{aligned}$$
If we denote \(\alpha = \frac{\gamma -p}{p}\) and \(\frac{\beta }{p-1}=\frac{\gamma }{p}\), we get (2.5). \(\square \)
Badiale–Tarantello conjecture
Theorem 2.1 also gives a new proof of the generalised Badiale-Tarantello conjecture [3] (see, also [18]) on the optimal constant in Hardy inequalities in \({\mathbb {R}}^n\) with weights taken with respect to a subspace.
Proposition 2.3
Let \(x=(x',x'') \in {\mathbb {R}}^N \times {\mathbb {R}}^{n-N}\), \(1\le N \le n\), \(2<\gamma <N\) and \(\alpha , \beta \in {\mathbb {R}}\). Then for any \(u \in C_0^{\infty }({\mathbb {R}}^n \backslash \{x'=0\} )\) and all \(1<p<\infty \), we have
$$\begin{aligned} \frac{|N-\gamma |}{p} \left\| \frac{u}{|x'|^{\frac{\gamma }{p}}}\right\| ^p_{L^p({\mathbb {R}}^n)} \le \left\| \frac{\nabla u}{|x'|^{\alpha }} \right\| _{L^p({\mathbb {R}}^n)} \left\| \frac{u}{|x'|^{\frac{\beta }{p-1}}} \right\| ^{p-1}_{L^p({\mathbb {R}}^n)}, \end{aligned}$$
(2.7)
where \(\gamma = \alpha +\beta +1\) and \(|x'|\) is the Euclidean norm \({\mathbb {R}}^N\). If \(\gamma \ne N\) then the constant \( \frac{|N-\gamma |}{p}\) is sharp.
The proof of Proposition 2.3 is similar to Corollary 2.2, so we sketch it only very briefly.
Proof of Proposition 2.3
Let us take \(V= |x'|^{2-\gamma }\). We observe that \( \Delta V = (2-\gamma )(N-\gamma ) |x'|^{-\gamma }<0, \) as well as \(|\nabla V| = |2-\gamma ||x'|^{(1-\gamma )}\) and \(|\Delta V| = |(2-\gamma )(N-\gamma )| |x'|^{-\gamma }\). Then (2.1) with
$$\begin{aligned} \left\| |\Delta V|^{\frac{1}{p}} u\right\| _{L^p({\mathbb {R}}^n)}^p= & {} |(2-\gamma )(N-\gamma )|\left\| \frac{u}{|x'|^{\frac{\gamma }{p}}} \right\| _{L^p({\mathbb {R}}^n)}^p,\\ \left\| \frac{|\nabla V|}{|\Delta V|^{\frac{p-1}{p}}} \nabla u \right\| _{L^p({\mathbb {R}}^n)}= & {} \frac{|2-\gamma |}{|(2-\gamma )(N-\gamma )|^{\frac{p-1}{p}}} \left\| \frac{\nabla u}{|x'|^{\frac{\gamma -p}{p}}} \right\| _{L^p({\mathbb {R}}^n)},\\ \left\| |\Delta V|^{\frac{1}{p}} u \right\| _{L^p({\mathbb {R}}^n)}^{p-1}= & {} |(2-\gamma )(N-\gamma )|^{\frac{p-1}{p}}\left\| \frac{u}{|x'|^{\frac{\gamma }{p}}}\right\| _{L^p({\mathbb {R}}^n)}^{p-1}, \end{aligned}$$
and denoting \(\alpha = \frac{\gamma -p}{p}\) and \(\frac{\beta }{p-1}=\frac{\gamma }{p}\), implies (2.7). \(\square \)
In particular, if we take \(\beta =(\alpha +1)(p-1)\) and \(\gamma =p(\alpha +1)\), then (2.7) implies
$$\begin{aligned} \frac{|N-p(\alpha +1) |}{p} \left\| \frac{u}{|x'|^{\alpha +1}}\right\| _{L^p({\mathbb {R}}^n)} \le \left\| \frac{\nabla u}{|x'|^{\alpha }} \right\| _{L^p({\mathbb {R}}^n)}, \end{aligned}$$
(2.8)
where \(1<p< \infty \), for all \(u \in C_0^{\infty }({\mathbb {R}}^n \backslash \{x'=0\})\), \(\alpha \in {\mathbb {R}}\), with sharp constant. When \(\alpha =0\), \(1<p<N\) and \(2\le N\le n\), the inequality (2.8) implies that
$$\begin{aligned} \left\| \frac{u}{|x'|} \right\| _{L^p({\mathbb {R}}^n)} \le \frac{p}{N-p} \left\| \nabla u \right\| _{L^p({\mathbb {R}}^n)}, \end{aligned}$$
(2.9)
which given another proof of the Badiale-Tarantello conjecture from [3, Remark 2.3].
The local Hardy type inequality on \(\mathbb {G}\).
As another consequence of Theorem 2.1 we obtain the local Hardy type inequality with the boundary term, with d being the \({\mathcal {L}}\)-gauge as in (1.2).
Corollary 2.4
Let \(\Omega \subset \mathbb {G}\) with \(0 \notin \partial \Omega \) be an admissible domain in a stratified group \(\mathbb {G}\) of homogeneous dimension \(Q\ge 3.\) Let \(0>\alpha > 2-Q\). Let \(u \in C^{1}(\Omega \backslash \{0\})\cap C({\overline{\Omega }}\backslash \{0\})\). Then we have
$$\begin{aligned} \frac{|Q+\alpha -2|}{p} \left\| d^{\frac{\alpha -2}{p}} |\nabla _{\mathbb {G}} d|^{\frac{2}{p}} u \right\| _{L^p(\Omega )}\le & {} \left\| d^{\frac{p+\alpha -2}{p}} |\nabla _{\mathbb {G}}d|^{\frac{2-p}{p}} |\nabla _{\mathbb {G}}u| \right\| _{L^p(\Omega )} \nonumber \\&\quad -\,\frac{1}{p}\left\| d^{\frac{\alpha -2}{p}} |\nabla _{\mathbb {G}} d|^{\frac{2}{p}} u\right\| ^{1-p}_{L^p(\Omega )} \nonumber \\&\quad \times \,\int _{\partial \Omega } d^{\alpha -1} |u|^p \langle {\widetilde{\nabla }} d,dx\rangle . \end{aligned}$$
(2.10)
This extends the local Hardy type inequality that was obtained in [19] for \(p=2\):
$$\begin{aligned} \frac{|Q+\alpha -2|}{2} \left\| d^{\frac{\alpha -2}{2}} |\nabla _{\mathbb {G}} d| u \right\| _{L^2(\Omega )}\le & {} \left\| d^{\frac{\alpha }{2}} |\nabla _{\mathbb {G}}u| \right\| _{L^2(\Omega )} \nonumber \\&\quad -\,\frac{1}{2} \left\| d^{\frac{\alpha -2}{2}} |\nabla _{\mathbb {G}} d| u\right\| _{L^2(\Omega )}^{-1}\nonumber \\&\quad \times \,\int _{\partial \Omega } d^{\alpha -1} |u|^2 \langle {\widetilde{\nabla }} d,dx\rangle . \end{aligned}$$
(2.11)
Proof of Corollary 2.4
First, we can multiply both sides of the inequality (2.1) by \(\left\| |{\mathcal {L}}V|^{\frac{1}{p}} u \right\| _{L^p(\Omega )}^{1-p}\), so that we have
$$\begin{aligned} \left\| |{\mathcal {L}}V|^{\frac{1}{p}}u \right\| _{L^p(\Omega )} \le p \left\| \frac{|\nabla _{\mathbb {G}}V|}{|{\mathcal {L}}V|^{\frac{p-1}{p}}}|\nabla _{\mathbb {G}} u|\right\| _{L^p(\Omega )} - \left\| |{\mathcal {L}} V|^{\frac{1}{p}} u\right\| _{L^p(\Omega )}^{1-p} \int _{\partial \Omega }|u|^p \langle {\widetilde{\nabla }}V,dx\rangle .\nonumber \\ \end{aligned}$$
(2.12)
Now, let us take \(V=d^{\alpha }\). We have
$$\begin{aligned} {\mathcal {L}} d^{\alpha } = \nabla _{\mathbb {G}}(\nabla _{\mathbb {G}} \varepsilon ^{\frac{\alpha }{2-Q}})= & {} \nabla _{\mathbb {G}}\left( \frac{\alpha }{2-Q}\varepsilon ^{\frac{\alpha +Q-2}{2-Q}}\nabla _{\mathbb {G}}\varepsilon \right) \\= & {} \frac{\alpha (\alpha +Q-2)}{(2-Q)^2} \varepsilon ^{\frac{\alpha -4+2Q}{2-Q}}|\nabla _{\mathbb {G}} \varepsilon |^2 + \frac{\alpha }{2-Q}\varepsilon ^{\frac{\alpha +Q-2}{2-Q}} {\mathcal {L}} \varepsilon . \end{aligned}$$
Since \(\varepsilon \) is the fundamental solution of \({\mathcal {L}}\), we have
$$\begin{aligned} {\mathcal {L}} d^{\alpha } = \frac{\alpha (\alpha +Q-2)}{(2-Q)^2} \varepsilon ^{\frac{\alpha -4+2Q}{2-Q}}|\nabla _{\mathbb {G}} \varepsilon |^2= \alpha (\alpha +Q-2)d^{\alpha -2}|\nabla _{\mathbb {G}}d|^2. \end{aligned}$$
We can observe that \({\mathcal {L}}d^{\alpha } <0\), and also the identities
$$\begin{aligned}&\left\| |{\mathcal {L}}d^{\alpha }|^{\frac{1}{p}} u \right\| _{L^p(\Omega )} = \alpha ^{\frac{1}{p}} |Q+\alpha -2|^{\frac{1}{p}} \left\| d^{\frac{\alpha -2}{p}} |\nabla _{\mathbb {G}}d|^{\frac{2}{p}} u \right\| _{L^p(\Omega )},\\&\left\| \frac{|\nabla _{\mathbb {G}}d^{\alpha }|}{|{\mathcal {L}}d^{\alpha }|^{\frac{p-1}{p}}} |\nabla _{\mathbb {G}} u| \right\| _{L^p(\Omega )} = \alpha ^{\frac{1}{p}}|Q+\alpha -2|^{\frac{1-p}{p}} \left\| d^{\frac{\alpha -2+p}{p}} |\nabla _{\mathbb {G}}d|^{\frac{2-p}{p}} |\nabla _{\mathbb {G}}u| \right\| _{L^p(\Omega )},\\&\left\| |{\mathcal {L}}d^{\alpha }|^{\frac{1}{p}} u \right\| ^{1-p}_{L^p(\Omega )} \int _{\partial \Omega } |u|^p\langle {\widetilde{\nabla }} d^{\alpha },dx\rangle = \alpha ^{\frac{1}{p}} |Q+\alpha -2|^{\frac{1-p}{p}} \left\| d^{\frac{\alpha -2}{p}} |\nabla _{\mathbb {G}}d|^{\frac{2}{p}} u \right\| ^{1-p}_{L^p(\Omega )}\\&\quad \int _{\partial \Omega } d^{\alpha -1}|u|^p\langle {\widetilde{\nabla }} d,dx\rangle . \end{aligned}$$
Using (2.12) we arrive at
$$\begin{aligned}&\frac{|Q+\alpha -2|}{p} \left\| d^{\frac{\alpha -2}{p}} |\nabla _{\mathbb {G}} d|^{\frac{2}{p}} u \right\| _{L^p(\Omega )} \le \left\| d^{\frac{p+\alpha -2}{p}} |\nabla _{\mathbb {G}}d|^{\frac{2-p}{p}} |\nabla _{\mathbb {G}}u| \right\| _{L^p{\Omega }} \\&\quad -\frac{1}{p} \left\| d^{\frac{\alpha -2}{p}} |\nabla _{\mathbb {G}} d|^{\frac{2}{p}} u\right\| ^{1-p}_{L^p(\Omega )} \int _{\partial \Omega } d^{\alpha -1} |u|^p \langle {\widetilde{\nabla }} d,dx\rangle , \end{aligned}$$
which implies (2.10). \(\square \)
Uncertainty type principles
The inequality (2.12) implies the following Heisenberg-Pauli-Weyl type uncertainty principle on stratified groups.
Corollary 2.5
Let \(\Omega \subset \mathbb {G}\) be admissible domain in a stratified group \(\mathbb {G}\) and let \(V \in C^2(\Omega )\) be real-valued. Then for any complex-valued function \(u \in C^2(\Omega )\cap C^1({\overline{\Omega }})\) we have
$$\begin{aligned}&\left\| |{\mathcal {L}}V|^{-\frac{1}{p}} u \right\| _{L^p(\Omega )}\left\| \frac{|\nabla _{\mathbb {G}}V|}{|{\mathcal {L}}V|^{\frac{p-1}{p}}} |\nabla _{\mathbb {G}} u| \right\| _{L^p(\Omega )} \nonumber \\&\ge \frac{1}{p} \left\| u \right\| ^2_{L^p(\Omega )} + \frac{1}{p}\left\| |{\mathcal {L}}V|^{-\frac{1}{p}} u \right\| _{L^p(\Omega )}\left\| |{\mathcal {L}}V|^{\frac{1}{p}} u \right\| ^{1-p}_{L^p(\Omega )}\int _{\partial \Omega } |u|^p \langle {\widetilde{\nabla }} V,dx\rangle .\nonumber \\ \end{aligned}$$
(2.13)
In particular, if u vanishes on the boundary \(\partial \Omega \), then we have
$$\begin{aligned} \left\| |{\mathcal {L}}V|^{-\frac{1}{p}} u \right\| _{L^p(\Omega )}\left\| \frac{|\nabla _{\mathbb {G}}V|}{|{\mathcal {L}}V|^{\frac{p-1}{p}}} |\nabla _{\mathbb {G}} u| \right\| _{L^p(\Omega )} \ge \frac{1}{p} \left\| u \right\| ^2_{L^p(\Omega )}. \end{aligned}$$
(2.14)
Proof of Corollary 2.5
By using the extended Hölder inequality and (2.12) we have
$$\begin{aligned}&\left\| |{\mathcal {L}}V|^{-\frac{1}{p}} u \right\| _{L^p(\Omega )}\left\| \frac{|\nabla _{\mathbb {G}}V|}{|{\mathcal {L}}V|^{\frac{p-1}{p}}} |\nabla _{\mathbb {G}} u| \right\| _{L^p(\Omega )} \\&\quad \ge \frac{1}{p} \left\| |{\mathcal {L}}V|^{-\frac{1}{p}} u \right\| _{L^p(\Omega )} \left\| |{\mathcal {L}}V|^{\frac{1}{p}} u \right\| _{L^p(\Omega )} \\&\qquad +\,\frac{1}{p} \left\| |{\mathcal {L}}V|^{-\frac{1}{p}} u \right\| _{L^p(\Omega )}\left\| |{\mathcal {L}}V|^{\frac{1}{p}} u \right\| ^{1-p}_{L^p(\Omega )}\int _{\partial \Omega } |u|^p \langle {\widetilde{\nabla }} V,dx\rangle ,\\&\quad \ge \frac{1}{p} \left\| |u|^2 \right\| _{L^{\frac{p}{2}}(\Omega )} + \frac{1}{p}\left\| |{\mathcal {L}}V|^{-\frac{1}{p}} u \right\| _{L^p(\Omega )}\left\| |{\mathcal {L}}V|^{\frac{1}{p}} u \right\| ^{1-p}_{L^p(\Omega )}\int _{\partial \Omega } |u|^p \langle {\widetilde{\nabla }} V,dx\rangle .\\&\quad = \frac{1}{p} \left\| u \right\| ^2_{L^p(\Omega )} + \frac{1}{p}\left\| |{\mathcal {L}}V|^{-\frac{1}{p}} u \right\| _{L^p(\Omega )}\left\| |{\mathcal {L}}V|^{\frac{1}{p}} u \right\| ^{1-p}_{L^p(\Omega )}\int _{\partial \Omega } |u|^p \langle {\widetilde{\nabla }} V,dx\rangle , \end{aligned}$$
proving (2.13). \(\square \)
By setting \(V =|x'|^{\alpha }\) in the inequality (2.14), we recover the Heisenberg–Pauli–Weyl type uncertainty principle on stratified groups as in [17] and [20]:
$$\begin{aligned} \left( \int _{\Omega } |x'|^{2-\alpha } |u|^p dx \right) \left( \int _{\Omega } |x'|^{\alpha +p-2} |\nabla _{\mathbb {G}} u|^p dx \right) \ge \left( \frac{N+\alpha -2}{p} \right) ^p \left( \int _{\Omega } |u|^p dx \right) ^2. \end{aligned}$$
In the abelian case \(\mathbb {G}=({\mathbb {R}}^n,+)\), taking \(N=n\ge 3\), for \(\alpha =0\) and \(p=2\) this implies the classical Heisenberg–Pauli–Weyl uncertainty principle for all \(u \in C^{\infty }_0({\mathbb {R}}^n \backslash \{0\})\):
$$\begin{aligned} \left( \int _{{\mathbb {R}}^n} |x|^2 |u(x)|^2 dx\right) \left( \int _{{\mathbb {R}}^n} |\nabla u(x)|^2 dx \right) \ge \left( \frac{n-2}{2} \right) ^2 \left( \int _{{\mathbb {R}}^n} |u(x)|^2 dx \right) ^2. \end{aligned}$$
By setting \(V =d^{\alpha }\) in the inequality (2.14), we obtain another uncertainty type principle:
$$\begin{aligned}&\left( \int _{\Omega } \frac{|u|^p}{d^{\alpha -2}|\nabla _{\mathbb {G}}d|^2} dx \right) \left( \int _{\Omega } d^{\alpha +p-2}|\nabla _{\mathbb {G}}d|^{2-p}|\nabla _{\mathbb {G}}u|^p dx\right) \\&\quad \ge \left( \frac{Q+\alpha -2}{p} \right) ^p \left( \int _{\Omega } |u|^p dx\right) ^2; \end{aligned}$$
taking \(p=2\) and \(\alpha =0\) this yields
$$\begin{aligned} \left( \int _{\Omega } \frac{d^{2}}{|\nabla _{\mathbb {G}}d|^2}|u|^2 dx \right) \left( \int _{\Omega } |\nabla _{\mathbb {G}}u|^2 dx\right) \ge \left( \frac{Q-2}{2} \right) ^2 \left( \int _{\Omega } |u|^2 dx\right) ^2. \end{aligned}$$