Advertisement

Revista Matemática Complutense

, Volume 31, Issue 2, pp 449–465 | Cite as

Local Cauchy theory for the nonlinear Schrödinger equation in spaces of infinite mass

  • Simão Correia
Article

Abstract

We consider the Cauchy problem for the nonlinear Schrödinger equation on \(\mathbb {R}^d\), where the initial data is in \(\dot{H}^1(\mathbb {R}^d)\cap L^p(\mathbb {R}^d)\). We prove local well-posedness for large ranges of p and discuss some global well-posedness results.

Keywords

Nonlinear Schrödinger equation Local well-posedness Global well-posedness 

Mathematics Subject Classification

35Q55 35A01 

Notes

Acknowledgements

The author was partially suported by Fundação para a Ciência e Tecnologia, through the Grants UID/MAT/04561/2013 and SFRH/BD/96399/2013.

References

  1. 1.
    Bényi, Á., Okoudjou, K.A.: Local well-posedness of nonlinear dispersive equations on modulation spaces. Bull. Lond. Math. Soc. 41(3), 549–558 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cazenave, T.: Semilinear Schrödinger equations, Volume 10 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003)Google Scholar
  4. 4.
    Cazenave, T., Weissler, F.B.: Rapidly decaying solutions of the nonlinear Schrödinger equation. Commun. Math. Phys. 147(1), 75–100 (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    Correia, S., Figueira, M.: Spatial plane waves for the nonlinear Schrödinger equation: local existence and stability results. Commun. Partial Differ. Equ. 42(4), 519–555 (2017)CrossRefzbMATHGoogle Scholar
  6. 6.
    Foschi, D.: Inhomogeneous Strichartz estimates. J. Hyperbolic Differ. Equ. 2(1), 1–24 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gallo, C.: Schrödinger group on Zhidkov spaces. Adv. Differ. Equ. 9(5–6), 509–538 (2004)zbMATHGoogle Scholar
  8. 8.
    Gérard, P.: The Cauchy problem for the Gross–Pitaevskii equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(5), 765–779 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Holmer, J., Roudenko, S.: Divergence of infinite-variance nonradial solutions to the 3D NLS equation. Commun. Partial Differ. Equ. 35(5), 878–905 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ogawa, T., Tsutsumi, Y.: Blow-up of \(H^1\) solution for the nonlinear Schrödinger equation. J. Differ. Equ. 92(2), 317–330 (1991)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation, Volume 139 of Applied Mathematical Sciences. Self-Focusing and Wave Collapse. Springer, New York (1999)Google Scholar
  12. 12.
    Tao, T.: Nonlinear Dispersive Equations, Volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI. Local and Global Analysis (2006)Google Scholar
  13. 13.
    Vargas, A., Vega, L.: Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite \(L^2\) norm. J. Math. Pures Appl. (9) 80(10), 1029–1044 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Vilela, M.C.: Inhomogeneous Strichartz estimates for the Schrödinger equation. Trans. Am. Math. Soc. 359(5), 2123–2136 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zhou, Y.: Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space \(W^{s, p}\) for \(p<2\). Trans. Am. Math. Soc. 362(9), 4683–4694 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2017

Authors and Affiliations

  1. 1.CMAF-CIO and FCULLisbonPortugal

Personalised recommendations