Abstract
In this paper, we construct some examples of rank2 Brill–Noether loci with “unexpected” properties on general curves. The key examples are in genus 6, but we also have interesting examples in genus 5 and in higher genus. We relate some of our results to the recent proof of Mercat’s conjecture in rank 2 by Bakker and Farkas.
Introduction
Let C be a general curve of genus g defined over the complex numbers. The main focus of this paper is to study certain rank2 Brill–Noether loci in the case \(g=6\) and, in particular, to show that B(2, 10, 4) is reducible (see below for the definitions); this is contrary to naïve expectations. We consider also similar situations in genus 5 and in higher genus and finish with some results on bundles computing the rank2 Clifford index for low values of g. These examples are presented as a contribution to higher rank Brill–Noether theory, which is still far from fully understood even in rank 2.
We denote by M(n, d) (respectively, \(\widetilde{M}(n,d)\)) the moduli space of stable bundles (respectively, Sequivalence classes of semistable bundles) of rank n and degree d on C and define
(Here [E] denotes the Sequivalence class of a semistable bundle and \({\text {gr}}(E)\) denotes the graded object associated with E.) We write also \(K_C\) for the canonical bundle of C and \(B(2,K_C,k)\) (\(\widetilde{B}(2,K_C,k)\)) for the subvariety of \(B(2, 2g2,k)\) (\(\widetilde{B}(2,2g2,k)\)) given by bundles of determinant \(K_C\). Our first main result is
Theorem 3.2
Let C be a general curve of genus \(g=\lambda (2\lambda 1)\) for \(\lambda \in \mathbb {Z}\), \(\lambda \ge 2\). Then \(B(2,K_C,2\lambda )\) has pure dimension \(4\lambda (\lambda 1)3\) and is smooth outside the nonempty locus \(B(2,K_C,2\lambda +1)\). Moreover \(B(2,2g2,2\lambda )\) has at least one irreducible component of dimension \(4\lambda (\lambda 1)3\) which is not contained in \(B(2,K_C,2\lambda )\).
This is of particular significance in the case \(\lambda =2\) or equivalently \(g=6\), which is the first value of the genus for which the expected dimension of \(B(2,2g2,k)\) can be negative while that of \(B(2,K_C,k)\) is nonnegative. The appropriate value of k in this case is \(k=5\) and we prove
Theorem 4.1
Let C be a general curve of genus 6. Then \(\widetilde{B}(2,10,k)=\emptyset \) for \(k\ge 6\). Moreover \(B(2,10,5)=\widetilde{B}(2,10,5)=B(2,K_C,5)\) consists of a single point \(E_{2,10,5}\) and \(E_{2,10,5}\) is generated.
We show further that B(3, 10, 5) consists of a single point (Proposition 4.4). Also in Sect. 4, we relate our results for genus 6 to others in the literature and interpret them in terms of coherent systems.
In Sect. 5, we consider a somewhat analogous problem for \(g=5\). Finally, in Sect. 6, we obtain some results on bundles computing rank2 Clifford indices for low values of g which extend those of [9] and relate them to the recent result of Bakker and Farkas [2] confirming Mercat’s conjecture in rank 2 for general curves.
My thanks are due to the referee(s) for some useful suggestions.
Background and preliminaries
Throughout the paper, C will be a smooth curve of genus \(g\ge 5\) defined over the complex numbers. For any vector bundle E on C, we write \(n_E\) for the rank of E and \(d_E\) for the degree of E. We define
and
With this notation, \({\text {Cliff}}_1(C)\) is the classical Clifford index \({\text {Cliff}}(C)\). We recall that, for C a general curve of genus g, \({\text {Cliff}}(C)=\lfloor \frac{g1}{2}\rfloor \) and the gonality of C (the minimal degree of a line bundle with \(h^0\ge 2\)) is \({\text {gon}}(C)=\lfloor \frac{g1}{2}\rfloor +2\). It is clear that \({\text {Cliff}}_n(C)\le {\text {Cliff}}(C)\) for all n, and Mercat [12] conjectured that \({\text {Cliff}}_n(C)={\text {Cliff}}(C)\) (actually Mercat’s conjecture is a little stronger than this (see [8, Proposition 3.3]), but equivalent to it in rank 2). There are many counterexamples to this conjecture, but recently Bakker and Farkas [2] have proved that, for C a general curve of genus g,
The Brill–Noether locus B(n, d, k) has an “expected” dimension
Provided \(d<n(g1)+k\), every irreducible component of B(n, d, k) has dimension \(\ge \beta (n,d,k)\). The infinitesimal behaviour of B(n, d, k) is governed in part by the multiplication map (often referred to as the Petri map)
In fact, B(n, d, k) is smooth of dimension \(\beta (n,d,k)\) at a point E if and only if the Petri map is injective. For \(n=1\), one can define a Petri curve to be a curve for which
is injective for all line bundles L. The general curve of any genus is a Petri curve and, if C is Petri and \(d<g1+k\), B(1, d, k) is empty if \(\beta (1,d,k)<0\), of dimension \(\beta (1,d,k)\) if \(\beta (1,d,k)\ge 0\) and irreducible if \(\beta (1,d,k)>0\). Moreover, if \(\beta (1,d,k)\ge 0\), the singular set of B(1, d, k) is \(B(1,d,k+1)\). (For these and other results in classical Brill–Noether theory, see [1].) There is no analogue of these results for higher rank.
For \(B(2,K_C,k)\), the expected dimension is not \(\beta (2,2g2,k)g\), but instead it is
There is also a different Petri map (obtained by symmetrizing the usual Petri map with respect to the natural isomorphism \(E\simeq E^*\otimes K_C\))
One can then prove that, on a general curve, this Petri map is always injective for stable E and hence \(B(2,K_C,k)\) is smooth at any point E for which \(h^0(E)=k\) (see [22]). There are also partial results on nonemptiness for \(B(2,K_C,k)\) for all g [21] (see also [10, 24]) and complete results for small values of g [3]. Some detailed results for \(k\le 3\) can be found in [7, section 7] and for \(k=4\) in [6].
By a subpencil of a bundle E, we mean a rank1 subsheaf L of E such that \(h^0(L)=2\). The following lemmas will be useful.
Lemma 2.1
Let E be a bundle of rank 2 on C such that \(h^0(E)=s+2\), \(s\ge 1\). If E does not admit a subpencil, then \(h^0(\det E)\ge 2s+1\).
Proof
This is the rank2 case of [19, Lemma 3.9]. \(\square \)
Corollary 2.2
Let C be a general curve of genus \(g\ge 6\) and E a semistable bundle with \(d_E=2g2\) which computes \({\text {Cliff}}_2(C)\). If \(g=9\), suppose in addition that E is stable. If either g is even or \(\det E\not \simeq K_C\), then E is expressible in the form
where \(d_L=d_{L'}=\left\lfloor \frac{g1}{2}\right\rfloor +2\) and \(h^0(L)=h^0(L')=2\). Moreover, all sections of \(L'^*\otimes K_C\) lift to E.
Proof
Suppose first that \(g=2s\), so that \({\text {Cliff}}_2(C)={\text {Cliff}}(C)=s1\) and \(h^0(E)=s+2\). If E does not admit a subpencil, then, by Lemma 2.1, \(h^0(\det E)\ge 2s+1=g+1\), a contradiction. Now suppose that \(g=2s+1\), so that \({\text {Cliff}}_2(C)=s\) and again \(h^0(E)=s+2\). Now, by Lemma 2.1, \(h^0(\det E)\ge 2s+1=g\). Since \(\det E\not \simeq K_C\), this is again a contradiction. So E admits a subpencil.
For \(g=6\), the only possibility is given by (2.2). For \(g\ge 7\), the existence of (2.2) follows from [9, Proposition 7.2 and Theorem 7.4]. Using RiemannRoch, it is easy to check that
so all sections of \(L'^*\otimes K_C\) must lift to E. \(\square \)
Lemma 2.3
Let C be a Petri curve of genus g and L a line bundle with \(d_L={\text {gon}}(C)\) and \(h^0(L)=2\). Then

(1)
L is generated, in other words, the evaluation map
$$\begin{aligned} H^0(L)\otimes \mathcal {O}_C\rightarrow L \end{aligned}$$is surjective;

(2)
if g is even, \(h^0(L\otimes L)=3\);

(3)
if g is odd, \(h^0(L\otimes L)=4\).
Proof
(1) is obvious, since otherwise \(h^0(L(p))=2\) for some \(p\in C\), contradicting the definition of \({\text {gon}}(C)\). For (2) and (3), see [9, Lemma 2.10]. \(\square \)
Lemma 2.4
There exist nonsplit exact sequences
of vector bundles for which all sections of \(E_2\) lift to sections of E if and only if the multiplication map
fails to be surjective. Such extensions are classified up to isomorphism by \({\mathbb P}(({\text {Coker}}m)^*)\).
Proof
The extensions for which all sections lift are classified by the kernel of the natural map
The map m is the dual of this map. \(\square \)
The following lemma is undoubtedly well known, but I have been unable to locate a reference.
Lemma 2.5
Let F be a vector bundle on C with \(h^1(F)\ge r\) for some positive integer r. Then, for \(\tau \) a general torsion sheaf of length \(t\le r\) and
a general extension of \(\tau \) by F, \(H^0(E)=H^0(F)\).
Proof
By induction, it s clearly sufficient to prove this when \(t=1\). In this case \(\tau =\mathbb {C}_p\) for a general point \(p\in C\). Dualising (2.3) and tensoring by \(K_C\), we obtain an exact sequence
Now note that \(h^0(F^*\otimes K_C)\ne 0\) and for general p and the general homomorphism \(F^*\otimes K_C\rightarrow \mathbb {C}_p\), the map \(H^0(F^*\otimes K_C)\rightarrow \mathbb {C}_p\) is nonzero. It follows that \(h^0(E^*\otimes K_C)=h^0(F^*\otimes K_C)1\) and so \(h^0(E)=h^0(F)\), giving the required result. \(\square \)
Finally, we recall that a coherent system on C of type (n, d, k) is a pair (E, V) consisting of a vector bundle E of rank n and degree d and a subspace V of \(H^0(E)\) of dimension k. There is a concept of \(\alpha \)stability for coherent systems for \(\alpha \in \mathbb {R}\) and moduli spaces \(G(\alpha ;n,d,k)\) and \(\widetilde{G}(\alpha ;n,d,k)\) exist. (For basic information on this construction, see [4].) The definition of \(\alpha \)stability depends on the \(\alpha \)slope of (E, V) defined by \(\mu _\alpha (E,V):=\frac{d+\alpha k}{n}\).
A reducible Brill–Noether locus
In this section, we prove our first main theorem. While the key case is for curves of genus 6, the theorem in fact holds for infinitely many values of the genus.
Lemma 3.1
Let C be a general curve of genus \(g=\lambda (2\lambda 1)\) for \(\lambda \in \mathbb {Z}\), \(\lambda \ge 2\). Then \(B(1,g\lambda ,\lambda )\) is a finite set of cardinality
Moreover, if \(L\in B(1,g\lambda ,\lambda )\), then L is generated and \(h^0(L)=\lambda \).
Proof
This follows by classical Brill–Noether theory from the fact that \(\beta (1,g\lambda ,\lambda )=0\) (see [1, p.211 formula (1.2)] for the formula for the cardinality). \(\square \)
For C as in Lemma 3.1, a simple calculation gives
Theorem 3.2
Let C be a general curve of genus \(g=\lambda (2\lambda 1)\) for \(\lambda \in \mathbb {Z}\), \(\lambda \ge 2\). Then \(B(2,K_C,2\lambda )\) has pure dimension \(4\lambda (\lambda 1)3\) and is smooth outside the nonempty locus \(B(2,K_C,2\lambda +1)\). Moreover \(B(2,2g2,2\lambda )\) has at least one irreducible component of dimension \(4\lambda (\lambda 1)3\) which is not contained in \(B(2,K_C,2\lambda )\).
Proof
The fact that \(B(2,K_C,2\lambda )\) and \(B(2,K_C,2\lambda +1)\) are both nonempty is proved in [3] for \(\lambda =2\) and in [18, 21] for \(\lambda \ge 3\). The rest of the first assertion is proved in [22].
To obtain bundles in \(B(2,2g2,2\lambda )\) which do not have determinant \(K_C\), we consider exact sequences
where \(L_1\), \(L_2\) are distinct elements of \(B(1,g\lambda ,\lambda )\) (these exist by Lemma 3.1) and the \(p_j\) are distinct points of C. The general such extension gives rise to a stable bundle E by [11, Théorème A5]; moreover the homomorphism \(E^*\rightarrow L_i^*\) obtained by dualising (3.2) is surjective. By RiemannRoch, \(h^1(L_i)=2\lambda 1\), so Lemma 2.5 implies that, for a general choice of \(p_j\) and (3.2),
Moreover, for general \(p_j\), we have
We now show that, for a generic choice of the \(p_j\), the Petri map of E is injective. This will prove that E belongs to a unique irreducible component \(B_0\) of dimension \(4\lambda (\lambda 1)3\) [see (3.1)], which is evidently not contained in \(B(2,K_C,4)\). In fact, the Petri map
splits into
and
It is sufficient to prove that both these maps are injective. Now we have a commutative diagram
where the vertical arrows are induced by the homomorphism \(E^*\rightarrow L_1^*\). The lower horizontal map is injective since C is Petri, so
Since \(E^*\rightarrow L_1^*\) is surjective,
Moreover, \(h^0(L_2^*(p_1\cdots p_{2\lambda 2})\otimes K_C)=1\), so
is injective. Hence \({\text {Ker}}\mu _1=0\) and \(\mu _1\) is injective. The same argument applies to \(\mu _2\), completing the proof that \(B_0\) has dimension \(4\lambda (\lambda 1)3\). \(\square \)
Remark 3.3
The fact that \(B(2,2g2,2\lambda )\) has a component of dimension \(4\lambda (\lambda 1)3\) is proved in [20]. The argument in the proof above, using [11], is more precise and shows that there is a component not contained in \(B(2,K_C,2\lambda )\). On the other hand, it is not proved in [11] that the component \(B_0\) has dimension \(4\lambda (\lambda 1)3\), so we need to prove this directly.
Remark 3.4
See [7, Theorems 5.13, 5.17] for many examples of nonempty Brill–Noether loci. Our examples do not satisfy the hypotheses in these theorems.
Genus 6
In genus 6, one can prove a good deal more. In this case, we have
Theorem 4.1
Let C be a general curve of genus 6. Then \(\widetilde{B}(2,10,k)=\emptyset \) for \(k\ge 6\). Moreover \(B(2,10,5)=\widetilde{B}(2,10,5)=B(2,K_C,5)\) consists of a single point \(E_{2,10,5}\) and \(E_{2,10,5}\) is generated.
Proof
Let E be a semistable bundle of rank 2 and degree 10. Since \({\text {Cliff}}_2(C)={\text {Cliff}}(C)=2\) by (2.1), \(h^0(E)\le 5\). This proves the first statement. By classical Brill–Noether theory, \(B(1,5,3)=\emptyset \); hence \(B(2,10,5)=\widetilde{B}(2,10,5)\). Note also that \(B(2,K_C,5)\) is nonempty by [3] and is smooth of dimension 0 by [22]. Now suppose that \(E\in B(2,10,5)\). By Corollary 2.2, there exists an exact sequence
where \(d_L=4\), \(h^0(L)=2\), \(d_{L''}=6\), \(h^0(L'')=3\) and all sections of \(L''\) lift to E. Tensoring (4.1) by L and taking global sections, we get
Since C is Petri, by Lemma 2.3, \(h^0(L\otimes L)=3\), while the sequence
gives
since \(E\otimes L^*\) is stable of rank 2 and degree 2, so that \(h^0(E\otimes L^*)\le 1\) by [5, Theorem B]. So
Since \(d_{L''\otimes L}=10\), this implies that \(\det E=L''\otimes L\simeq K_C\). It follows that every \(E\in B(2,10,5)\) can be expressed in the form (4.1) with \(L''=L^*\otimes K_C\). By classical Brill–Noether theory, there are five choices for L [1, p.211 formula (1.2)]. However, since C can be embedded in a K3 surface S for which \({\text {Pic}}S\) is generated by the class of C, these five line bundles all determine the same bundle \(E_{2,10,5}\) (see the paragraph following the statement of [23, Théorème 0.1]).
Note finally that, if \(E_{2,10,5}\) is not generated, then an elementary transformation yields a bundle in B(2, 9, 5), contradicting the fact that \({\text {Cliff}}_2(C)=2\). \(\square \)
Remark 4.2
From the definition of \({\text {Cliff}}_2(C)\), it follows that any bundle computing \({\text {Cliff}}_2(C)\) has either degree 8 and \(h^0=4\) or degree 10 and \(h^0=5\). Hence, by Theorem 4.1 and [9, Proposition 5.10], the only such bundles are strictly semistable bundles of degree 8 with \(h^0=4\) and the stable bundle \(E_{2,10,5}\).
Corollary 4.3
For all \(\alpha >0\),
Proof
If \(E=E_{2,10,5}\), then \(h^0(E)=5\) by Theorem 4.1. Moreover, E is stable, so any line subbundle has degree \(\le 4\) and hence \(h^0\le 2\). Hence \((E,H^0(E))\in G(\alpha ;2,10,5)\) for all \(\alpha >0\).
Conversely, suppose \((E,V)\in G(\alpha ;2,10,5)\). If E is not stable, then E admits a line subbundle L of degree \(\ge 5\). Hence \(d_{E/L}\le 5\) and \(h^0(E/L)\le 2\). It follows that \(\dim (V\cap H^0(L))\ge 3\), contradicting the \(\alpha \)stability of (E, V). \(\square \)
The following proposition gives an example of a nonempty rank3 Brill–Noether locus on C with negative Brill–Noether number.
Proposition 4.4
Let C be a general curve of genus 6. Then \(B(3,10,k)=\emptyset \) for \(k\ge 6\). Moreover B(3, 10, 5) consists of a single point \(E_{3,10,5}\) and there exists a short exact sequence
Furthermore, for all \(\alpha >0\),
Proof
By [12, Theorem 2.1] or [8, Proposition 3.5], we have \({\text {Cliff}}_3(C)=2\). Hence any stable bundle F of rank 3 and degree 10 has \(h^0(F)\le 5\).
Now recall that \(E:=E_{2,10,5}\) is generated and \(h^0(E)=5\). We define a bundle F of rank 3 and degree 10 (hence slope \(\mu (F)=\frac{10}{3}\)) by the exact sequence
Dualising, we obtain
Since \(h^0(E^*)=0\), it follows that \(h^0(F)=5\). It remains to prove that F is stable.
If L is a quotient line bundle of F, then L is generated and, since \(L^*\subset F^*\) and \(h^0(F^*)=0\) by (4.3), \(h^0(L^*)=0\). Hence \(h^0(L)\ge 2\) and \(d_L\ge 4>\mu (F)\). Now suppose that G is a stable rank2 quotient bundle of F. Then G is generated by the image V of \(H^0(E)^*\) in \(H^0(G)\) and \(h^0(G^*)=0\), so \(\dim V\ge 3\). Let K be the kernel of the canonical surjection \(V\otimes \mathcal {O}_C\rightarrow G\). If \(\dim V=3\), then K is a line bundle with \(h^0(K^*)\ge 3\), so \(d_G=d_K\ge 6\). On the other hand, the homomorphism \(E^*\rightarrow K\) is nonzero, since otherwise \(E^*\) would map into a proper direct factor of \(H^0(E)^*\otimes \mathcal {O}_C\), a contradiction. Hence \(K^*\subset E\) and \(d_K\le 4\) by stability of E. This is a contradiction. It follows that \(\dim V\ge 4\) and hence \(d_G\ge 8\) since \({\text {Cliff}}(G)\ge {\text {Cliff}}_2(C)=2\). Thus F is stable. We define \(E_{3,10,5}:=F\), so that (4.3) becomes (4.2).
Conversely, let \(F\in B(3,10,5)\). We have already observed that \(h^0(F)=5\). If F is not generated, then, applying an elementary transformation, there exists a semistable bundle of rank 3 and degree 9 with \(h^0=5\); this contradicts the fact that \({\text {Cliff}}_3(C)=2\). We can therefore define a bundle G of rank 2 and degree 10 by the exact sequence
Dualising, we have
Now suppose L is a quotient line bundle of G and let V be the image of \(H^0(F)^*\) in \(H^0(L)\). Arguing as above, we have \(\dim V\ge 2\). If \(\dim V\ge 3\), then \(d_L\ge 6>\mu (G)\). If \(\dim V=2\), then \(d_L\ge 4\). Moreover, by stability of F, the kernel of the surjection \(V\otimes \mathcal {O}_C\rightarrow L\) is a line bundle of degree \(\ge 3\), so \(d_L=d_K\le 3\). This gives a contradiction, so G is stable and hence \(G\simeq E_{2,10,5}\). So (4.4) becomes (4.2) and \(F\simeq E_{3,10,5}\).
Finally, if \(F=E_{3,10,5}\), it is clear that \((F,H^0(F))\in G(\alpha ;3,10,5)\) for all \(\alpha >0\). Conversely, if \((F,V)\in G(\alpha ;3,10,5)\) with F not stable, then F has either a line subbundle L of degree \(\ge 4\) or a rank2 subbundle G of degree \(\ge 7\). In the first case, we must have \(h^0(L)\le 1\), so \(h^0(F/L)\ge 4\), which is impossible. In the second case, \(h^0(G)\le 3\), so \(h^0(F/G)\ge 2\), which again is impossible. So F is stable and hence \(F\simeq E_{3,10,5}\). \(\square \)
Remark 4.5
The fact that \(B(3,K_C,5)\) has dimension zero shows that Osserman’s lower bound for the dimension of the Brill–Noether locus for bundles of determinant \(K_C\) when \(r=3\), \(k=5\) [17, Theorem 1.1(III)] can be sharp.
Remark 4.6
When \(g=6\), there is a method of constructing bundles in B(2, 10, 4) with determinant different from \(K_C\) which differs from that that in the proof of Theorem 3.2 (this is similar to the construction described in more generality in [7, Theorem 5.13], but our examples do not satisfy the hypotheses of this theorem). Consider nontrivial extensions
where \(L\in B(1,4,2)\) and \(L''\) is a generated line bundle of degree 6 with \(h^0(L'')=2\). If \(h^0(E)=4\), then E is generated and stable. In fact, if E were not stable, it would admit a line subbundle M of degree 5 with \(h^0(M)=2\). But then there would exist a nonzero homomorphism \(M\rightarrow L''\); since \(h^0(M)=h^0(L'')\), this implies that \(L''\) is not generated. To obtain a bundle E with \(h^0(E)=4\) in (4.5), we require all sections of \(L''\) to lift to sections of E. For this, by Lemma 2.4, we need the multiplication map
to fail to be surjective. Calculating dimensions, the LHS of (4.6) has dimension 6, while the RHS has dimension 7, so surjectivity does indeed fail. Moreover, by the basepoint free pencil trick, the kernel of (4.6) is \(H^0(L^*\otimes L''^*\otimes K_C)\), which is zero since \(L''\not \simeq L_1^*\otimes K_C\). It follows that the cokernel of (4.6) has dimension 1, so, for any given \(L''\), the extension is unique up to isomorphism. By classical Brill–Noether theory, the bundles \(L''\) form an irreducible variety of dimension \(\beta (1,6,2)=4\). Hence all such extensions belong to a single irreducible component \(B_1\) of B(2, 10, 4). Since there are five possible choices for L (see Lemma 3.1), we obtain a possible total of five irreducible components in this way. Similarly there are ten possibilities for the component \(B_0\) in Theorem 3.2. If we could prove that \(B_1=B_0\) (or equivalently that the bundles E in (3.2) belong to \(B_1\)), then these 15 components would all coincide.
Proposition 4.7
For all \(\alpha >0\),
and
Proof
The proof is similar to that of Corollary 4.3, the key point being that any line bundle L with \(d_L\le 5\) has \(h^0\le 2\). \(\square \)
Genus 5
Let C be a general curve of genus 5. Since \({\text {Cliff}}_2(C)=2\), it follows that \(h^0(E)\le 4\) for any semistable bundle of rank 2 and degree \(\le 2g2=8\). Moreover the bundles which compute \({\text {Cliff}}_2(C)\) are precisely the semistable bundles of rank 2 and degree 8 with \(h^0=4\). Note that
Proposition 5.1
Let C be a general curve of genus 5. Then \(B(2,K_C,4)\) is smooth of dimension 2 and consists of the stable bundles with \(h^0(E)=4\) which can be expressed in the form
with all sections of \(K_C\otimes M^*\) lifting to E. Moreover, \(B(2,K_C,4)\) is irreducible and
In particular, \(B(2,8,4)=B(2,K_C,4)\).
Proof
The fact that \(B(2,K_C,4)\) is smooth of dimension 2 follows from [3] and [22]. A bundle \(E\in B(2,K_C,4)\) cannot contain a subpencil since \(B(1,3,2)=\emptyset \); it follows from [9, Lemma 5.6] that E can be expressed in the form (5.1). Now consider the multiplication map
This factors through \(S^2H^0(M^*\otimes K_C)\), so \(\dim ({\text {Ker}}m)\ge 3\). Now \(M^*\otimes K_C\) is generated and the kernel F of its evaluation map has rank 2. If L is a quotient line bundle of \(F^*\), then L is generated and \(h^0(L^*)=0\), so \(d_L \ge 4\); since \(d_{F^*}=6\), this proves that F is stable. Moreover \({\text {Ker}}m\simeq H^0(F\otimes M^*\otimes K_C)\simeq H^0(F^*)\). Since \({\text {Cliff}}_2(C)=2\), it follows that \(\dim ({\text {Ker}}m)\le 3\). Hence \(\dim ({\text {Ker}}m)=3\) and \(\dim ({\text {Coker}}m)=2\). It follows from Lemma 2.4 that the isomorphism classes of nontrivial extensions (5.1), for which all sections of \(M^*\otimes K_C\) lift, form a \(\mathbb {P}^1\)fibration W over B(1, 2, 1). Moreover, W is irreducible and the open subset for which E is stable maps surjectively to \(B(2,K_C,4)\), which is therefore irreducible. For (5.2), see [9, Proposition 5.7]. \(\square \)
Remark 5.2
Mukai states that \(\overline{B(2,K_C,4)}\simeq {\mathbb P}^2\) (see the table in [15, section 4]). Since \(\beta (1,4,2)=1\), it follows from (5.2) that all components of \(\widetilde{B}(2,8,4)\) have dimension 2. In particular, \(\widetilde{B}(2,8,4)\) has no component of dimension \(\beta (2,8,4)\). This does not contradict [20] since \(\beta (1,4,2)=1\). Moreover \(\overline{B(2,8,4)}\ne \widetilde{B}(2,8,4)\).
Proposition 5.3
For all \(\alpha >0\),
and
Proof
The proof is similar to that of Corollary 4.3. \(\square \)
Bundles computing the Clifford index
By [2, Proposition 11], the bundles computing \({\text {Cliff}}_2(C)\) on a general curve of genus g have either \(h^0=4\) or degree \(2g2\) and \(h^0=2+\left\lceil \frac{g1}{2}\right\rceil \). This substantially improves [9, Theorem 7.4]. Bakker and Farkas prove further that the second possibility does not arise when g is even and \(g\ge 10\) [2, Theorem 4] and conjecture that the same is true for g odd, \(g\ge 15\). In fact, for g odd, \(g\ge 15\), \(\widetilde{B}(2,K_C,\frac{g+3}{2})=\emptyset \) and all \(E\in B(2,2g2,\frac{g+3}{2})\) can be expressed in the form (2.2) with \(L\not \simeq L'\) [2, Remark 13], but it is not known whether any such exist.
For \(g\le 5\), there are no semistable bundles of degree \(\le 2g2\) with \(h^0>4\), while, for \(g=6\), we have already answered the question in Remark 4.2. It remains to consider \(g=7,8,9,11,13\).
Example 6.1
Let C be a general curve of genus 7. Then \({\text {Cliff}}_2(C)=3\) and we have
It is stated but not formally proved in [3] that \(B(2,K_C,5)\) is nonempty. This is proved in [21] and [9, Proposition 7.7]. The more precise statement that \(B(2,K_C,5)\) is a Fano 3fold of Picard number 1 and genus 7 is [15, Theorem 8.1] (see also [13, Theorem 4.13]); this holds for all nontetragonal curves of genus 7. By classical Brill–Noether theory, \(B(1,6,3)=\emptyset \), so \(\widetilde{B}(2,12,5)=B(2,12,5)\). Moreover, by Corollary 2.2, any bundle \(E\in B(2,12,5)\setminus B(2,K_C,5)\) can be expressed in the form (2.2) with \(L,L'\in B(1,5,2)\), \(L\not \simeq L'\). It is easy to see that any bundle given by a nontrivial extension (2.2), for which all sections of \(L'^*\otimes K_C\) lift, is stable, but it is not known whether such extensions exist.
Example 6.2
Let C be a general curve of genus 8. Then \({\text {Cliff}}_2(C)=3\) and we have
Again, it is stated in [3] and proved in [9, Proposition 7.2] that \(B(2,K_C,6)\) is nonempty. By classical Brill–Noether theory, \(B(1,7,3)=\emptyset \), so \(\widetilde{B}(2,14,6)=B(2,14,6)\). Furthermore, \(B(2,K_C,6)\) is finite by [22] and consists of a single point by [23] (see also [13, Theorem 4.14], where the corresponding stable bundle is described). Finally, \(B(2,14,6)=B(2,K_C,6)\) by [2, Proposition 11].
Example 6.3
Let C be a general curve of genus 9. Then \({\text {Cliff}}_2(C)=4\) and we have
It is stated in [3] and proved in [21] and [9, Proposition 7.8] that \(B(2,K_C,6)\) is nonempty. Moreover (see [9, Theorem 7.4(1)]), there exist strictly semistable bundles \(Q\oplus Q'\) of degree 16 with \(h^0=6\). In fact, since there are just 42 line bundles of degree 8 with \(h^0=3\), there are 21 points of \(\widetilde{B}(2,K_C,6)\) corresponding to strictly semistable bundles. In fact, Mukai [13] asserts that \(\widetilde{B}(2,K_C,6)\) is a quartic 3fold in \(\mathbb {P}^4\) with 21 singular points. Finally, \(\widetilde{B}(2,16,6)=\widetilde{B}(2,K_C,6)\) by [2, Proposition 11].
Example 6.4
Let C be a general curve of genus 11. Then \({\text {Cliff}}_2(C)=5\) and we have
It is stated in [3] and proved in [9, Remark 7.5] that \(\widetilde{B}(2,K_C,7)\) is nonempty. More precisely, Mukai [14, Theorem 1] shows that \(\widetilde{B}(2,K_C,7)\) is a smooth K3 surface of genus 11. By classical Brill–Noether theory, \(B(1,10,4)=\emptyset \), so \(\widetilde{B}(2,20,7)=B(2, 20,7)\). Finally, \(B(2,20,7)=B(2,K_C,7)\) by [2, Proposition 11].
Example 6.5
Let C be a general curve of genus 13. Then \({\text {Cliff}}_2(C)=6\) and we have
By classical Brill–Noether theory, \(B(1,12,4)=\emptyset \), so \(\widetilde{B}(2,24,8)=B(2,24,8)\), but questions of existence are not clear. In fact, \(g=13\), \(k=8\) is the first case in which the existence part of the Bertram–Feinberg–Mukai conjecture
is unresolved. The arguments of [3, 10, 15, 21, 23, 24] all fail, although [10, Theorem 3.5] (see also [15]) does reduce the problem to a purely combinatorial one. Moreover, by [23, Proposition 4.3] and Lemma 2.4, if \(E\in B(2,K_C,8)\), then E does not admit a subpencil and is expressible in the form
with \(d_L\ge 6\) by [16]. We must have \(h^0(L)\le 1\), so
The only way to achieve equality is with \(d_L=6\) and \(h^0(L)=1\) and then all sections of \(L^*\otimes K_C\) must lift to E. On the other hand, if \(E\in B(2,24,8)\setminus B(2,K_C,8)\), then E is expressible in the form (2.2) with \(L,L'\in B(1,8,2)\), \(L\not \simeq L'\). It is not clear whether there are any L, \(L'\) for which there exist nontrivial extensions of this form for which all sections of \(L'^*\otimes K_C\) lift, but, if these do exist, E is necessarily stable. Note that, in this case, [2, Proposition 11] does not apply since the general curve of genus 13 cannot be embedded in a K3 surface.
References
Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves I, Grundlehren Math Wiss, vol. 267. Springer, New York (1985)
Bakker, B., Farkas, G.: The Mercat conjecture for stable rank 2 vector bundles on generic curves. arXiv: 1511.03253, to appear in Am. J. Math
Bertram, A., Feinberg, B.: On stable rank two bundles with canonical determinant and many sections. In: Algebraic Geometry (Catania, 1993, Barcelona 1994), Lecture Notes in Pure and Applied Mathematics, vol. 200, pp. 259–269. Marcel Dekker, New York (1998)
Bradlow, S.B., GarcíaPrada, O., Muñoz, V., Newstead, P.E.: Coherent systems and Brill–Noether theory. Int. J. Math. 14, 683–733 (2003)
BrambilaPaz, L., Grzegorczyk, I., Newstead, P.E.: Geography of Brill–Noether loci for small slopes. J. Algebr. Geom. 6, 645–669 (1997)
Castorena, A., ReyesAhumada, G.: Remarks on rank two bundles with canonical determinant and 4 sections. Rend. Circ. Mat. Palermo 64, 261–272 (2015)
Ciliberto, C., Flamini, F.: Extensions of line bundles and Brill–Noether loci of ranktwo vector bundles on a general curve. Rev. Roum. Math. Pures Appl. 60, 201–255 (2015)
Lange, H., Newstead, P.E.: Clifford indices for vector bundles on curves. In: Schmitt, A. (Ed.) Affine Flag Manifolds and Principal Bundles. Trends in Mathematics, pp. 165–202. Birkhäuser, Basel (2010)
Lange, H., Newstead, P.E.: Vector bundles of rank \(2\) computing Clifford indices. Commun. Algebra 41, 2317–2345 (2013)
Lange, H., Newstead, P.E., Park, Seong Suk: Nonemptiness of Brill–Noether loci in \(M(2, K)\). Commun. Algebra 44(2), 746–767 (2016)
Mercat, V.: Le problème de Brill–Noether et le théorème de Teixidor. Manuscr. Math. 98(1999), 75–85 (1999)
Mercat, V.: Clifford’s theorem and higher rank vector bundles. Int. J. Math. 13, 785–796 (2002)
Mukai, S.: Vector bundles and Brill–Noether theory. In: Current Topics in Complex Algebraic Geometry (Berkeley, CA, 1992/93), Mathematical Sciences Research Institute Publications, vol. 28, pp. 145–158. Cambridge University Press, Cambridge (1995)
Mukai, S.: Curves and K3 surfaces of genus eleven. In: Moduli of Vector Bundles (Sanda, 1994; Kyoto, 1994), Lecture Notes in Pure and Applied Mathematics, vol. 179, pp. 189–197. Dekker, New York (1996)
Mukai, S.: Nonabelian Brill–Noether theory and Fano 3folds. Sugaku Expos. 14, 125–153 (2001)
Mukai, S., Sakai, F.: Maximal subbundles of vector bundles on a curve. Manuscr. Math. 52, 251–256 (1985)
Osserman, B.: Special determinants in higherrank Brill–Noether theory. Int. J. Math. 24(11) (2013), Article ID:1350084
Osserman, B.: Linked symplectic forms and limit linear series in rank 2 with special determinant. Adv. Math. 288, 576–630 (2016)
Paranjape, K., Ramanan, S.: On the canonical ring of a curve. In: Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, vol. II, pp. 503–516 Kinokuniya, Tokyo (1987)
Teixidor i Bigas, M.: Brill–Noether theory for stable vector bundles. Duke Math. J. 62, 385–400 (1991)
Teixidor i Bigas, M.: Rank 2 bundles with canonical determinant. Math. Nachr. 265, 100–106 (2004)
Teixidor i Bigas, M.: Petri map for rank 2 bundles with canonical determinant. Compos. Math. 144(3), 705–720 (2008)
Voisin, C.: Sur l’application de Wahl des courbes satisfaisant la condition de Brill–Noether–Petri. Acta Math. 168, 249–272 (1992)
Zhang, N.: Towards the Bertram–Feinberg–Mukai conjecture. J. Pure Appl. Algebra 220(4), 1588–1654 (2016)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Newstead, P.E. Some examples of rank2 Brill–Noether loci. Rev Mat Complut 31, 201–215 (2018). https://doi.org/10.1007/s1316301702416
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s1316301702416
Keywords
 Algebraic curve
 Semistable vector bundle
 Clifford index
 Brill–Noether theory
Mathematics Subject Classification
 14H60