Revista Matemática Complutense

, Volume 29, Issue 1, pp 191–206 | Cite as

Preserving coarse properties

  • J. Dydak
  • Ž. VirkEmail author


The aim of this paper is to investigate properties preserved and co-preserved by coarsely n-to-1 functions, in particular by the quotient maps \(X\rightarrow X/\sim \) induced by a finite group G acting by isometries on a metric space X. The coarse properties we are mainly interested in are related to asymptotic dimension and its generalizations: having finite asymptotic dimension, asymptotic Property C (as defined by Dranishnikov in Rus. Math. Surv. 55(6):1085–1129, 2000), straight finite decomposition complexity, countable asymptotic dimension, and metric sparsification property. We provide an alternative description of asymptotic Property C and we prove that the class of spaces with straight finite decomposition complexity coincides with the class of spaces of countable asymptotic dimension.


Asymptotic dimension Asymptotic Property C Coarse geometry Coarsely n-to-1 functions Lipschitz maps  Metric sparsification property Straight finite decomposition complexity 

Mathematics Subject Classification

Primary 54F45 Secondary 55M10 


  1. 1.
    Bell, G., Dranishnikov, A.: A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory. Trans. Am. Math. Soc. 358(11), 4749–4764 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brodskiy, N., Dydak, J., Levin, M., Mitra, A.: Hurewicz theorem for Assouad–Nagata dimension. J. Lond. Math. Soc. 77(3), 741–756 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brodzki, J., Niblo, G.A., Špakula, J., Willett, R., Wright, N.: Uniform local amenability. J. Noncommut. Geom. 7(2), 583–603 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, Xiaoman, Tessera, Romain, Wang, Xianjin, Guoliang, Yu.: Metric sparsification and operator norm localization. Adv. Math. 218(5), 1496–1511 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dranishnikov, A.: Asymptotic topology. Rus. Math. Surv. 55(6), 1085–1129 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dranishnikov, A., Zarichnyi, M.: Asymptotic dimension, decomposition complexity, and Haver’s property C. arXiv:1301.3484
  7. 7.
    Dydak, J.: Coarse amenability and discreteness. arXiv:1307.3943
  8. 8.
    Dydak, J., Virk, Ž.: Inducing maps between Gromov boundaries. Mediterr J Math (accepted). arXiv:1506.08280
  9. 9.
    Engelking, R.: Theory of Dimensions Finite and Infinite, Sigma Series in Pure Mathematics, vol. 10. Heldermann Verlag, Berlin (1995)Google Scholar
  10. 10.
    Gromov, M.: Asymptotic invariants for infinite groups. In: Niblo, G., Roller, M. (eds.) Geometric Group Theory, vol. 2, pp. 1–295. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  11. 11.
    Miyata, T., Virk, Ž.: Dimension-raising maps in a large scale. Fundam. Math. 223, 83–97 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Yu, G.: The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Inventiones 139, 201–240 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Universidad Complutense de Madrid 2015

Authors and Affiliations

  1. 1.University of TennesseeKnoxvilleUSA
  2. 2.Univerza v LjubljaniLjubljanaSlovenia

Personalised recommendations