Skip to main content
Log in

Two new fixed point iterative schemes for absolute value equations

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

Absolute value equations (AVEs) can be used to solve many engineering, management science, and operations research problems. This paper proposes two new iterative schemes for solving \(Ax-{|x|}= b\), where A is an M-matrix. These methods depend on the splitting of the coefficient matrix. The convergence conditions for these two methods are given. Some numerical examples are given to demonstrate that the iterative schemes are valid and efficient. The results are inspiring and may animate more study in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amin, M., Erfanian, M.: A dynamic model to solve the absolute value equations. J. Comput. Appl. Math. 333, 28–35 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahn, B.H.: Solution of nonsymmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 33, 185–197 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing functions. J. Comput. Appl. Math. 327, 196–207 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ali, R., Pan, K.: The new iteration methods for solving absolute value equations. Appl. Math. 20, 1–14 (2021)

    Article  Google Scholar 

  5. Bai, Z.Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caccetta, L., Qu, B., Zhou, G.L.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48, 45–58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. SIA, Philadelphia (2009)

    Book  MATH  Google Scholar 

  8. Chen, C., Yu, D., Han, D.: Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations. J. Appl. Anal. Comput. (2020). arXiv:2001.05781

  9. Dehghan, M., Shirilord, A.: Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation. Appl. Numer. Math. 158, 425–438 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gu, X.M., Huang, T.Z., Li, H.B., Wang, S.F., Li, L.: Two-CSCS based iteration methods for solving absolute value equations. J. Appl. Math. Comput. 7, 1336–1356 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Guo, P., Wu, S.L.: A modified Gauss–Seidel iteration method for solving absolute value equations. In: Song H., Jiang D. (eds) Simulation Tools and Techniques. SIMUtools 2020 (2021)

  12. Hashemi, F., Ketabchi, S.: Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations. Numer. Algebra Control. Optim. 10, 13–21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hashemi, F., Ketabchi, S.: Optimal correction of infeasible equations system as \(Ax + B | x | = b\) Using \(l_{p}\)-norm regularization. Bol. Soc. Paran. Mat. 20, 1–16 (2019)

    Google Scholar 

  14. Hu, S.L., Huang, Z.H.: A note on absolute value equations. Optim. Lett. 4, 417–424 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ke, Y.F.: The new iteration algorithm for absolute value equation. Appl. Math. Lett. 99, 1–7 (2020)

    Article  MathSciNet  Google Scholar 

  16. Ke, Y.-F., Ma, C.-F.: SOR-like iteration method for solving absolute value equations. Appl. Math. Comput. 311, 195–202 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Li, S.-G., Jiang, H., Cheng, L.-Z., Liao, X.-K.: IGAOR and multisplitting IGAOR methods for linear complementarity problems. J. Comput. Appl. Math. 235, 2904–2912 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moosaei, H., Ketabchi, S., Jafari, H.: Minimum norm solution of the absolute value equations via simulated annealing algorithm. Afr. Math. 26, 1221–1228 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moosaei, H., Ketabchi, S.: Optimal correcting of absolute value equations by using smoothing techniques. J. Iinterdiscip. Math. 22, 531–538 (2019)

    Article  Google Scholar 

  20. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3, 101–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mezzadri, F.: On the solution of general absolute value equations. Appl. Math. Lett. 99, 1–7 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Miao, S.-X., Zhang, D.: On the preconditioned GAOR method for a linear complementarity problem with an M-matrix. J. Inequal. Appl. 2018, 195 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mao, X., Wangi, X.W., Edalatpanah, S.A., Fallah, M.: The monomial preconditioned SSOR method for linear complementarity problem. IEEE Access. 7, 73649–73655 (2019)

    Article  Google Scholar 

  24. Nguyen, C.T., Saheyab, B., Changa, Y.L., Chen, J.S.: Unified smoothing functions for absolute value equation associated with second-order cone. Appl. Numer. Math. 135, 206–227 (2019)

    Article  MathSciNet  Google Scholar 

  25. Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44, 363–372 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rohn, J.: A theorem of the alternatives for the equation \(Ax + B |x|= b\). Linear Multilinear Algebra 52, 421–426 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8, 35–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, S.L., Li, C.X.: A special shift splitting iteration method for absolute value equation. AIMS. Math. 5, 5171–5183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)

    MATH  Google Scholar 

  30. Yong, L.: Mixed integer linear programming method for absolute value equations. In: Proceedings of the 2009 International Symposium on Information Processing, pp 316–318 (2009)

  31. Zhang, C., Wei, Q.J.: Global and finite convergence of a generalized Newton method for absolute value equations. J. Optim. Theory Appl. 143, 391–403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, M., Huang, Z.-H., Li, Y.-F.: The sparsest solution to the system of absolute value equations. J. Oper. Res. Soc. China 3(1), 31–51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zainali, N., Lotfi, T.: On developing a stable and quadratic convergent method for solving absolute value equation. J. Comput. Appl. Math. 330, 742–747 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This Appendix demonstrates how to execute the proposed iterative methods. Method I for the AVE:

$$\begin{aligned} x^{m+1}=x^{m}-\lambda E[-M_{A} x^{m+1}+N_{A}x^{m}-(| x^{m}|+b)]. \end{aligned}$$

Method II for the AVE:

$$\begin{aligned} x^{m+1}=x^{m}+D_{A}^{-1}M_{A}x^{m+1}-\lambda E\left[ Ax^{m}-| x^{m}|-b \right] -D_{A}^{-1}M_{A}x^{m}. \end{aligned}$$

Both iterative schemes on the right-hand side include \(x^{m+1}\), which defines the unknown vector. Based on \(Ax-|x|=b,\) we obtain

$$\begin{aligned} x=A^{-1}(| x | +b). \end{aligned}$$

Thus, \(x^{m+1}\) can be approximated as follows:

$$\begin{aligned} x^{m+1}\approx A^{-1}(| x^{m} | +b). \end{aligned}$$

This procedure is named the Picard scheme [27]. The subsequent step is to describe the Method I algorithm. Algorithm for Method I:

$$\begin{aligned} y^{m}= & {} A^{-1}(| x^{m} | +b), \\ x^{m+1}= & {} x^{m}-\lambda E[-M_{A} y^{m}+N_{A}x^{m}-(| x^{m}|+b)]. \end{aligned}$$

Method II follows the similar procedure.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, R., Pan, K. Two new fixed point iterative schemes for absolute value equations. Japan J. Indust. Appl. Math. 40, 303–314 (2023). https://doi.org/10.1007/s13160-022-00526-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-022-00526-x

Keywords

Mathematics Subject Classification

Navigation