Skip to main content
Log in

The Sparsest Solution to the System of Absolute Value Equations

  • Original Paper
  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

On one hand, to find the sparsest solution to the system of linear equations has been a major focus since it has a large number of applications in many areas; and on the other hand, the system of absolute value equations (AVEs) has attracted a lot of attention since many practical problems can be equivalently transformed as a system of AVEs. Motivated by the development of these two aspects, we consider the problem to find the sparsest solution to the system of AVEs in this paper. We first propose the model of the concerned problem, i.e., to find the solution to the system of AVEs with the minimum \(l_0\)-norm. Since \(l_0\)-norm is difficult to handle, we relax the problem into a convex optimization problem and discuss the necessary and sufficient conditions to guarantee the existence of the unique solution to the convex relaxation problem. Then, we prove that under such conditions the unique solution to the convex relaxation is exactly the sparsest solution to the system of AVEs. When the concerned system of AVEs reduces to the system of linear equations, the obtained results reduce to those given in the literature. The theoretical results obtained in this paper provide an important basis for designing numerical method to find the sparsest solution to the system of AVEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caccetta, L., Qu, B., Zhou, G.L.: A globally and quadratically convergent method for absolute value equations. Comput. Optim. Appl. 48, 45–58 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cai, T.T., Zhang, A.: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory. 60, 122–132 (2014)

    Article  MathSciNet  Google Scholar 

  3. Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory. 51, 4203–4215 (2005)

    Article  MATH  Google Scholar 

  4. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, New York (2010)

    Book  Google Scholar 

  5. Eldar, Y.C., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  6. Hu, S.L., Huang, Z.H.: A note on absolute value equations. Optim. Lett. 4, 417–424 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hu, S.L., Huang, Z.H., Zhang, Q.: A generalized Newton method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 235, 1490–1501 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Juditsky, A., Nemirovski, A.S.: On verifiable sufficient conditions for sparse signal recovery via \(l_1\) minimization. Math. Program. 127, 57–88 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ketabchi, S., Moosaei, H.: Minimum norm solution to the absolute value equation in the convex case. J. Optim. Theory Appl. 154, 1080–1087 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kong, L.C., Xiu, N.H.: New bounds for restricted isometry constants in low-rank matrix recovery. Optimization-online, http://www.optimization-online.org/DB_FILE/2011/01/2894 (2011)

  11. Kong, L.C., Xiu, N.H.: Exact low-rank matrix recovery via nonconvex schatten \(p\)-minimization. Asia-Pac. J. Oper. Res. 30, 1340010 (2013)

    Article  Google Scholar 

  12. Kong, L.C., Tuncel, L., Xiu, N.H.: \(s\)-goodness for low-rank matrix recovery. Abstr. Appl. Anal. 2013, Article ID: 101974 (2013).

  13. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419, 359–367 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36, 43–53 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3, 101–108 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Mangasarian, O.L.: Absolute value equation solution via dual complementarity. Optim. Lett. 7, 625–630 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mangasarian, O.L.: Absolute value equation solution via linear programming. J. Optim. Theory Appl. 161, 870–876 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Natarajan, B.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Prokopyev, O.A., Butenko, S., Trapp, A.: Checking solvability of systems of interval linear equations and inequalities via mixed integer programming. Eur. J. Oper. Res. 199, 117–121 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44, 363–372 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rohn, J.: A theorem of the alternatives for the equation \(Ax + B|x| = b\). Linear Algebra Appl. 52, 421–426 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal mathcing pursuit. IEEE Trans. Inf. Theory. 53, 4655–4666 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhao, Y.B.: RSP-Based analysis for sparest and least \(l_1\)-norm solutions to underdetermined linear systems. IEEE Trans. Signal Process. 61, 5777–5788 (2013)

    Article  MathSciNet  Google Scholar 

  24. Zhao, Y.B.: Equivalence and strong equivalence between the sparsest and least \(l_1\)-norm nonnegative solutions of linear systems and their applications. J. Oper. Res. Soc. China. 2, 171–193 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, C., Wei, Q.J.: Global and finite convergence of a generalized Newton method for absolute value equations. J. Optim. Theory Appl. 143, 391–403 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang, M., Huang, Z.H., Zhang, Y.: Restricted \(p\)-isometry properties of nonconvex matrix recovery. IEEE Trans. Inf. Theory. 59, 4316–4323 (2013)

    Article  Google Scholar 

  27. Zhang, Y.: Theory of compressive sensing via \(l_1\) minimization: a Non-RIP analysis and extensions. J. Oper. Res. Soc. China. 1, 79–105 (2013)

    Article  MATH  Google Scholar 

  28. Zhou, S.L., Kong, L.C., Xiu, N.H.: New bounds for RIC in compressed sensing. J. Oper. Res. Soc. China. 1, 227–237 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Hai Huang.

Additional information

This work was supported in part by the National Natural Science Foundation of China (Nos. 11171252, 11201332 and 11431002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Huang, ZH. & Li, YF. The Sparsest Solution to the System of Absolute Value Equations. J. Oper. Res. Soc. China 3, 31–51 (2015). https://doi.org/10.1007/s40305-014-0067-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-014-0067-6

Keywords

Mathematics Subject Classification

Navigation