Skip to main content

Advertisement

Log in

Foliar Nutrients Reflect Variation in Floristic Quality and Hydrology of Calcareous Fens

  • Wetland Biogeochemistry
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Calcareous fens are a rare type of groundwater dependent wetland with plant communities adapted to environmental stressors that include low nutrient availability, low oxygen availability, and various chemical toxicities. The conservation status/integrity of these plant communities is often quantified through floristic quality metrics that depend on intensive floristic inventories. Here we examine relationships between floristic quality, foliar chemistry, hydrology, and soil chemistry descriptors of six calcareous fens in southern Wisconsin in various states of degradation. Through examination of site descriptor correlations, Partial Least Squares Regression (PLSR), variation partitioning, and predictor variable stability analysis, we found foliar nutrient levels (e.g., foliar nitrogen and phosphorus) to be the strongest and most consistent predictors of floristic quality in these fens. Relationships between foliar nutrient levels, hydrology, and soil chemistry suggest water saturation is strongly linked to foliar nitrogen, phosphorus, and manganese. Since foliar nutrients are readily measurable both remotely and in-situ, our finding that foliar nutrients are strong predictors of floristic quality could have implications regarding monitoring the ecological integrity of these imperiled ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Arthur C. Ryzak, David Bart, Eric G.Booth, and Steven P. Loheide II. The first draft of the manuscript was written by Arthur C. Ryzak and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. https://doi.org/10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Almendinger JE, Leete JH (1998) Regional and local hydrogeology of calcareous fens in the Minnesota River basin, USA. Wetlands 18:184–202. https://doi.org/10.1007/BF03161655

    Article  Google Scholar 

  • Amon JP, Thompson CA, Carpenter QJ, Miner J (2002) Temperate zone fens of the glaciated Midwestern USA. Wetlands 22:301–317. https://doi.org/10.1672/0277-5212(2002)022[0301:tzfotg]2.0.co;2

    Article  Google Scholar 

  • Andersen CM, Bro R (2010) Variable selection in regression—a tutorial. J Chemom 24:728–737. https://doi.org/10.1002/cem.1360

    Article  CAS  Google Scholar 

  • Andersen DK, Nygaard B, Fredshavn JR, Ejrnæs R (2013) Cost-effective assessment of conservation status of fens. Appl Veg Sci 16:491–501

    Article  Google Scholar 

  • Army Corps of Engineers (1987) Corps of Engineers wetlands delineation manual. [Vicksburg, Miss.] : [U.S. Army Engineer Waterways Experiment Station]: [Springfield, Va. : [available from National Technical Information Service], [1987]

  • Bart D, Davenport T, Carpenter Q (2015) Stress and land-use legacies alter the relationship between invasive- and native- plant richness. J Veg Sci 26:80–88. https://doi.org/10.1111/jvs.12220

    Article  Google Scholar 

  • Bart D, Booth E, Loheide SP, Bernthal T (2020) Impacts of groundwater extraction on calcareous fen floristic quality. J Environ Qual 49:723–734. https://doi.org/10.1002/jeq2.20059

    Article  CAS  PubMed  Google Scholar 

  • Bart D, Davenport T, Yantes A (2013) Preliminary Report on Abiotic Resistance to Plant Invasions in WI Calcareous Fens. Report Presented to Wisconsin Department of Natural Resources. 82

  • Bedford BL, Godwin KS (2003) Fens of the United States: Distribution, characteristics, and scientific connection versus legal isolation. Wetlands 23:608–629. https://doi.org/10.1672/0277-5212(2003)023[0608:FOTUSD]2.0.CO;2

    Article  Google Scholar 

  • Bedford BL, Walbridge MR, Aldous A (1999) Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80:2151–2169. https://doi.org/10.2307/176900

    Article  Google Scholar 

  • Ben-Dor E, Chabrillat S, and Demattê AM (2019) Characterization of Soil Properties Using Reflectance Spectroscopy. In PS Thenkabail, JG Lyon, and A Huete (Eds.), Hyperspectral Remote Sensing of Vegetation (2nd ed., Volume 1, pp. 273–302) CRC Press.

  • Bernthal T (2003) Development of a Floristic Quality Assessment Methodology for Wisconsin - Final Report to USEPA - Region V.

  • Bombonato L, Siffi C, Gerdol R (2010) Variations in the foliar nutrient content of mire plants: effects of growth-form based grouping and habitat. Plant Ecol 211:235–251. https://doi.org/10.1007/s11258-010-9786-x

    Article  Google Scholar 

  • Boomer K, Bedford B (2008) Groundwater-induced redox-gradients control soil properties and phosphorus availability across four headwater wetlands, New York, USA. Biogeochemistry 90:259–274. https://doi.org/10.1007/s10533-008-9251-2

    Article  CAS  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the Spatial Component of Ecological Variation. Ecology 73:1045–1055. https://doi.org/10.2307/1940179

    Article  Google Scholar 

  • Boyer MLH, Wheeler BD (1989) Vegetation Patterns in Spring-Fed Calcareous Fens: Calcite Precipitation and Constraints on Fertility. J Ecol 77:597–609. https://doi.org/10.2307/2260772

    Article  CAS  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils: Soil Sci 59:39–46. https://doi.org/10.1097/00010694-194501000-00006

  • Carpenter QJ (1995) Toward a new definition of calcareous fen for Wisconsin (USA). University of Wisconsin, Madison

    Google Scholar 

  • Davenport T, Bart D, Carpenter Q (2014) Altered Plant-community Composition and Edaphic Features Associated with Plowing in Southern Wisconsin Fens. Wetlands 34:449–457. https://doi.org/10.1007/s13157-013-0511-0

    Article  Google Scholar 

  • Eggers SD, Reed DM (1987) Wetland plants and plant communities of Minnesota & Wisconsin. US Army Corps of Engineers, St. Paul District

  • Eggers SD, Reed DM (2015) Wetland Plants and Plant Communities of Minnesota & Wisconsin, Version 3.2. US Army Corps of Engineers, St. Paul District

  • European Environment Agency (2020) EUNIS -Factsheet for Rich fens, including eutrophic tall-herb fens and calcareous flushes and soaks. https://eunis.eea.europa.eu/habitats/277. Accessed 22 Jun 2020

  • Farrés M, Platikanov S, Tsakovski S, Tauler R (2015) Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J Chemom 29:528–536. https://doi.org/10.1002/cem.2736

    Article  CAS  Google Scholar 

  • Fennessy S, Jacobs A, Kentula M (2004) Review of Rapid Methods for Assessing Wetland Condition.

  • Francis CM, Austen MJW, Bowles JM, Draper WB (2000) Assessing Floristic Quality in Southern Ontario Woodlands. Nat Areas J 20:66–77

    Google Scholar 

  • Gauch HG Jr (1982) Multivariate analysis in community ecology. Cambridge University Press, Cambridge [Cambridgeshire] ; New York

  • Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Analytica Chimica Acta 185:1–17. https://doi.org/10.1016/0003-2670(86)80028-9

    Article  CAS  Google Scholar 

  • Guo M, Li J, Sheng C, Xu J, Wu L (2017) A Review of Wetland Remote Sensing. Sensors 17:4

    Google Scholar 

  • Gusewell S, Koerselman M (2002) Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol Evol Syst 5:37–61. https://doi.org/10.1078/1433-8319-0000022

    Article  Google Scholar 

  • Hájek M, Horsák M, Tichý L et al (2011) Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J Biogeogr 38:742–755. https://doi.org/10.1111/j.1365-2699.2010.02424.x

    Article  Google Scholar 

  • Holte K (1966) A floristic and ecological analysis of the Excelsior Fen complex in northwest Iowa. University of Iowa

  • Hurvich CM, Tsai C-L (1993) A Corrected Akaike Information Criterion for Vector Autoregressive Model Selection. J Time Ser Anal 14:271–279. https://doi.org/10.1111/j.1467-9892.1993.tb00144.x

    Article  Google Scholar 

  • Kloskowski J, Tanneberger F, Marczakiewicz P et al (2015) Optimal habitat conditions for the globally threatened Aquatic Warbler Acrocephalus paludicola in eastern Poland and their implications for fen management. Ibis 157:406–412. https://doi.org/10.1111/ibi.12247

    Article  Google Scholar 

  • Koerselman W, Verhoeven JTA (1992) Nutrient dynamics in mires of various trophic status: nutrient inputs and outputs and the internal nutrient cycle. Fens and Bogs in the Netherlands: Vegetation, History, Nutrient Dynamics and Conservation 397–432.

  • Koerselman W, Meuleman AFM (1996) The Vegetation N: P Ratio: a New Tool to Detect the Nature of Nutrient Limitation. J Appl Ecol 33:1441–1450. https://doi.org/10.2307/2404783

    Article  Google Scholar 

  • Kopeć D, Michalska-Hejduk D, Sławik Ł et al (2016) Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat. Ecol Indic 70:196–208. https://doi.org/10.1016/j.ecolind.2016.06.001

    Article  Google Scholar 

  • Krämer N, Sugiyama M (2011) The Degrees of Freedom of Partial Least Squares Regression. J Am Stat Assoc 106:697–705

    Article  Google Scholar 

  • Legendre P, legendre L (2012) Numerical ecology. Elsevier, 3rd English ed. Amsterdam; Boston

  • Lilliefors HW (1967) On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. J Am Stat Assoc 62:399–402. https://doi.org/10.2307/2283970

    Article  Google Scholar 

  • Loozen Y, Karssenberg D, deJong SM, Wang S, van Dijk J, Wassen MJ, Rebel KT (2019) Exploring the use of vegetation indices to sense canopy nitrogen to phosphoruous ratios in grasses. Int J Appl Earth Obs Geoinformation 75:1–14

    Article  Google Scholar 

  • Martens H, Martens M (2000) Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Prefer 11:5–16. https://doi.org/10.1016/S0950-3293(99)00039-7

    Article  Google Scholar 

  • Martens H (1991) Multivariate calibration. Wiley, 1991, c1989., Chichester [England] ; New York

  • Mood AM (1971) Partitioning Variance in Multiple Regression Analyses as a Tool for Developing Learning Models. Am Educ Res J 8:191–202. https://doi.org/10.2307/1162174

    Article  Google Scholar 

  • Moore DRJ, Keddy PA, Gaudet CL, Wisheu IC (1989) Conservation of wetlands: Do infertile wetlands deserve a higher priority? Biological Conservation 47:203–217. https://doi.org/10.1016/0006-3207(89)90065-7

    Article  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL (ed) Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, pp 403–430

    Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of Wetlands: Science and Applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Roelofsen HD, van Bodegom PM, Kooistra L, van Amerongen JJ, Witte JM (2015) An evaluation of remote sensing derived soil pH and average spring groundwater table for ecological assessments. Int J Appl Earth Obs Geoinformation 43:149–159

    Article  Google Scholar 

  • Růžička J (1983) Flow Injection Analysis. Anal Chem 55:1040A-1053A. https://doi.org/10.1021/ac00261a723

    Article  Google Scholar 

  • Schlesinger WH (2013) Biogeochemistry: an analysis of global change, 3rd edn. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Schulte EE, Hopkins BG (1996) Estimation of Soil Organic Matter by Weight Loss-On-Ignition. Soil Organic Matter: Analysis and Interpretation. John Wiley & Sons, Ltd, pp 21–31

  • Šefferová Stanová V, Šeffer J, Janák M (2008) Management of Natura 2000 Habitats. Alkaline Fens. 7230

  • Serneels S, Lemberge P, Espen PJV (2004) Calculation of PLS prediction intervals using efficient recursive relations for the Jacobian matrix. J Chemom 18:76–80. https://doi.org/10.1002/cem.849

    Article  CAS  Google Scholar 

  • Sikora FJ (2006) A Buffer that Mimics the SMP Buffer for Determining Lime Requirement of Soil. Soil Sci Soc Am J 70:474–486. https://doi.org/10.2136/sssaj2005.0164

    Article  CAS  Google Scholar 

  • Simkin SM, Bedford BL, Weathers KC (2013) Phytotoxic Sulfide More Important than Nutrients for Plants Within a Groundwater-Fed Wetland. Ecosystems 16:1118–1129

    Article  CAS  Google Scholar 

  • Snowden RED, Wheeler BD (1993) Iron toxicity to fen plant species. J Ecol 81:35–46

    Article  CAS  Google Scholar 

  • Spyreas G (2019) Floristic Quality Assessment: a critique, a defense, and a primer. Ecosphere 10:e02825. https://doi.org/10.1002/ecs2.2825

    Article  Google Scholar 

  • Stockmeier LA, Givnish TJ (2019) Plant distribution, stature, rarity, and diversity in a patterned calcareous fen: tests of geochemical and leaf-height models. Am J Bot 106:807–820. https://doi.org/10.1002/ajb2.1298

    Article  PubMed  Google Scholar 

  • Stumm W, Morgan J (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. New York, Wiley

    Google Scholar 

  • Swink F (1979) Plants of the Chicago region: a checklist of the vascular flora of the Chicago region, with keys, notes on local distribution, ecology, and taxonomy, and a system for evaluation of plant communities. Morton Arboretum, [1979] ©1979, Revised and expanded edition with keys. Lisle, Ill

  • Tilman D (1987) Secondary Succession and the Pattern of Plant Dominance Along Experimental Nitrogen Gradients. Ecol Monogr 57:189–214. https://doi.org/10.2307/2937080

    Article  Google Scholar 

  • Tilman D (2020) Resource competition and community structure. (MPB-17), Volume 17. Princeton University Press, Princeton

  • Townsend PA, Foster JR, Chastain RA, Currie WS (2003) Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. IEEE Trans Geosci Remote Sens 41:1347–1354. https://doi.org/10.1109/TGRS.2003.813205

    Article  Google Scholar 

  • USEPA (1996) Method 200.7 - Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. In: Laboratory EMS (ed) Methods for the Determination of Metals in Environmental Samples. William Andrew Publishing, Westwood, pp 31–87

    Google Scholar 

  • Venterink HO, Pieterse NM, Belgers JDM et al (2002) N, P and K budgets along nutrient availability and productivity gradients in wetlands. Ecol Appl 12:1010–1026. https://doi.org/10.2307/3061033

    Article  Google Scholar 

  • Verhoeven JTA (1986) Nutrient dynamics in minerotrophic peat mires. Aquat Bot 25:117–137. https://doi.org/10.1016/0304-3770(86)90049-5

    Article  Google Scholar 

  • Verhoeven JTA, van Beek S, Dekker M, Storm W (1983) Nutrient dynamics in small mesotrophic fens surrounded by cultivated land. Oecologia 60:25–33. https://doi.org/10.1007/BF00379316

  • Vitt DH, Chee WL (1990) The Relationships of Vegetation to Surface Water Chemistry and Peat Chemistry in Fens of Alberta, Canada. Vegetatio 89:87–106

    Article  Google Scholar 

  • Walpole RE (1978) Probability and statistics for engineers and scientists, 2nd edn. New York, Macmillan

    Google Scholar 

  • Wold S, Ruhe A, Wold H, Dunn WJ III (1984) The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM J Sci Stat Comput 5:735–743. https://doi.org/10.1137/0905052

    Article  Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58:109–130. https://doi.org/10.1016/S0169-7439(01)00155-1

    Article  CAS  Google Scholar 

  • Woo (2002) Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha x glauca? Wetlands: the Journal of the Society of Wetland Scientists 509–521

Download references

Acknowledgements

We thank the editor and two anonymous reviewers for their helpful comments, Philip Townsend for his guidance on foliar nutrients and statistical modeling, Corey Poland for his field assistance, Rachell Dirstine and Jasmine Wyant for data collection, and the Wisconsin Department of Natural Resources, Dane County Parks, and Veterans of Foreign Wars (VFW) Post 8483 for facilitating access to the study sites. This material is based upon work supported by the Environmental Protection Agency Region 5 Wetland Program Development Grant (CD 00E01575) and the Wisconsin Water Resources Institute (WR17R001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur C. Ryzak.

Ethics declarations

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflicts of Interest/Competing Interests

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix

Appendix

Table

Table 3 List of species considered rare / specialists in Wisconsin, with coeficient of conservatism shown for all, and state element rank shown for rare species, with (S1) defined as critically imperiled and (S2) Imperiled

3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzak, A.C., Bart, D., Booth, E.G. et al. Foliar Nutrients Reflect Variation in Floristic Quality and Hydrology of Calcareous Fens. Wetlands 42, 60 (2022). https://doi.org/10.1007/s13157-022-01574-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13157-022-01574-2

Keywords

Navigation