Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 37:911–917. https://doi.org/10.1139/o59-099
CAS
Article
PubMed
Google Scholar
Borga P, Nilsson M, Tunlid A (1994) Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty-acid analysis. Soil Biology & Biochemistry 26:841–848. https://doi.org/10.1016/0038-0717(94)90300-X
CAS
Article
Google Scholar
Chambers LG, Guevara R, Boyer JN, Troxler TG, Davis SE (2016) Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil. Wetlands 36:361–371. https://doi.org/10.1007/s13157-016-0745-8
Article
Google Scholar
Cooper HV, Vane CH, Evers S, Aplin P, Girkin NT, Sjögersten S (2019) From peat swamp forest to oil palm plantations: the stability of tropical peatland carbon. Geoderma 342:109–117
CAS
Article
Google Scholar
Damste JSS, Rijpstra WIC, Hopmans EC, Weijers JWH, Foesel BU, Overmann J, Dedysh SN (2011) 13,16-dimethyl Octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Applied and Environmental Microbiology 77:4147–4154. https://doi.org/10.1128/Aem.00466-11
CAS
Article
PubMed
Google Scholar
Dargie GC, Lewis SL, Lawson IT, Mitchard ETA, Page SE, Bocko YE, Ifo SA (2017) Age, extent and carbon storage of the Central Congo Basin peatland complex. Nature. https://doi.org/10.1038/nature21048
De Deyn GB, Quirk H, Oakley S, Ostle N, Bardgett RD (2011) Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences 8:1131–1139. https://doi.org/10.5194/bg-8-1131-2011
CAS
Article
Google Scholar
Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of Bacteria community composition in an acidic Sphagnum peat bog. Applied and Environmental Microbiology 72:2110–2117. https://doi.org/10.1128/Aem.72.3.2110-2117.2006
CAS
Article
PubMed
PubMed Central
Google Scholar
Dhandapani S, Ritz K, Evers S, Yule CM, Sjögersten S (2019) Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in peninsular Malaysia. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.11.046
Dirghangi SS, Pagani M, Hren MT, Tipple BJ (2013) Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA. Organic Geochemistry 59:49–60. https://doi.org/10.1016/j.orggeochem.2013.03.009
CAS
Article
Google Scholar
dos Santos RAL, Vane CH (2016) Signatures of tetraether lipids reveal anthropogenic overprinting of natural organic matter in sediments of the Thames estuary, UK. Organic Geochemistry 93:68–76. https://doi.org/10.1016/j.orggeochem.2016.01.003
CAS
Article
Google Scholar
Espenberg M, Truu M, Mander Ü, Kasak K, Nõlvak H, Ligi T, Oopkaup K, Maddison M, Truu J (2018) Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils. Scientific Reports 8:1–12. https://doi.org/10.1038/s41598-018-23032-y
CAS
Article
Google Scholar
Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology. https://doi.org/10.1890/05-1839
Frostegard A, Tunlid A, Baath E (2011) Use and misuse of PLFA measurements in soils. Soil Biology & Biochemistry 43:1621–1625. https://doi.org/10.1016/j.soilbio.2010.11.021
CAS
Article
Google Scholar
Girkin NT (2018) Tropical forest greenhouse gas emissions: root regulation of soil processes and fluxes. University of Nottingham
Girkin NT, Dhandapani S, Evers S, Ostle N, Turner BL, Sjӧgersten S (2020) Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry 147:87–97
CAS
Article
Google Scholar
Girkin NT, Turner BL, Ostle N, Craigon J, Sjögersten S (2018a) Root exudate analogues accelerate CO2 and CH4 production in tropical peat. Soil Biology and Biochemistry 117:48–55. https://doi.org/10.1016/j.soilbio.2017.11.008
CAS
Article
Google Scholar
Girkin NT, Turner BL, Ostle N, Sjögersten S (2018b) Root-derived CO 2 flux from a tropical peatland. Wetlands Ecology and Management 26:985–991. https://doi.org/10.1007/s11273-018-9617-8
CAS
Article
Google Scholar
Girkin NT, Turner BL, Ostle N, Sjögersten S (2018c) Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat. Soil biology and biochemistry 127, 280–285. S0038071718303444
Girkin NT, Vane CH, Cooper HV, Moss-Hayes V, Craigon J, Turner BL, Ostle N, Sjögersten S (2019) Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142:231–245
CAS
Article
Google Scholar
Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol. Molecular Biology Reviews 60(2):439–471
Hodgkins SB, Richardson CJ, Dommain R, Wang H, Glaser PH, Verbeke B, Winkler BR, Cobb AR, Rich VI, Missilmani M, Flanagan N, Ho M, Hoyt AM, Harvey CF, Vining SR, Hough MA, Moore TR, Richard PJH, De La Cruz FB, Toufaily J, Hamdan R, Cooper WT, Chanton JP (2018) Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nature Communications 9:1–13. https://doi.org/10.1038/s41467-018-06050-2
CAS
Article
Google Scholar
Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wosten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–1514. https://doi.org/10.5194/bg-7-1505-2010
CAS
Article
Google Scholar
Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071. https://doi.org/10.5194/bg-9-1053-2012
CAS
Article
Google Scholar
Hoyos-Santillan J, Craigon J, Lomax BH, Lopez OR, Turner BL, Sjögersten S (2016a) Root oxygen loss from Raphia taedigera palms mediates greenhouse gas emissions in lowland neotropical peatlands. Plant and Soil 404:47–60. https://doi.org/10.1007/s11104-016-2824-2
CAS
Article
Google Scholar
Hoyos-Santillan J, Lomax BH, Large D, Turner BL, Boom A, Lopez OR, Sjogersten S (2016b) Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biology & Biochemistry 103:86–96. https://doi.org/10.1016/j.soilbio.2016.08.017
CAS
Article
Google Scholar
Hoyos-Santillan J, Lomax BH, Large D, Turner BL, Boom A, Lopez OR, Sjögersten S (2015) Getting to the root of the problem: litter decomposition and peat formation in lowland Neotropical peatlands. Biogeochemistry 126:115–129. https://doi.org/10.1007/s10533-015-0147-7
CAS
Article
Google Scholar
Jackson CR, Liew KC, Yule CM (2009) Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp Forest. Microbial ecology 57:402–412. https://doi.org/10.1007/s00248-008-9409-4
Article
PubMed
Google Scholar
Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology. https://doi.org/10.1111/j.1365-2486.2005.001031.x
Kanokratana P, Uengwetwanit T, Rattanachomsri U, Bunterngsook B, Nimchua T, Tangphatsornruang S, Plengvidhya V, Champreda V, Eurwilaichitr L (2011) Insights into the phylogeny and metabolic potential of a primary tropical peat swamp Forest microbial community by metagenomic analysis. Microbial Ecology 61:518–528. https://doi.org/10.1007/s00248-010-9766-7
Article
PubMed
Google Scholar
Kong AY, Scow KM, Córdova-Kreylos AL, Holmes WE, Six J (2011). Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biology and Biochemistry 43(1), 20–30
Krashevska V, Klarner B, Widyastuti R, Maraun M, Scheu S (2015) Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biology and Fertility of Soils 51:697–705. https://doi.org/10.1007/s00374-015-1021-4
CAS
Article
Google Scholar
Kwon MJ, Haraguchi A, Kang H (2013) Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil Biology & Biochemistry 60:33–44. https://doi.org/10.1016/j.soilbio.2013.01.023
CAS
Article
Google Scholar
Maxfield PJ, Hornibrook ERC, Evershed RP (2006) Estimating high-affinity methanotrophic bacterial biomass, growth, and turnover in soil by phospholipid fatty acid C-13 labeling. Applied and Environmental Microbiology 72:3901–3907. https://doi.org/10.1128/Aem.02779-05
CAS
Article
PubMed
PubMed Central
Google Scholar
Mills CT, Slater GF, Dias RF, Carr SA, Reddy CM, Schmidt R, Mandernack KW (2013) The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep. FEMS Microbiology Ecology 84:474–494. https://doi.org/10.1111/1574-6941.12079
CAS
Article
PubMed
Google Scholar
Naafs BDA, Inglis GN, Zheng Y, Amesbury MJ, Biester H, Bindler R, Blewett J, Burrows MA, Torres DD, Chambers FM, Cohen AD, Evershed RP, Feakins SJ, Galka M, Gallego-Sala A, Gandois L, Gray DM, Hatcher PG, Coronado ENH, Hughes PDM, Huguet A, Kononen M, Laggoun-Defarge F, Lahteenoja O, Lamentowicz M, Marchant R, McClymont E, Pontevedra-Pombal X, Ponton C, Pourmand A, Rizzuti AM, Rochefort L, Schellekens J, De Vleeschouwer F, Pancost RD (2017) Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochimica et Cosmochimica Acta 208:285–301. https://doi.org/10.1016/j.gca.2017.01.038
CAS
Article
Google Scholar
Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ (2009) Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied soil ecology 42:183–190. https://doi.org/10.1016/j.apsoil.2009.03.003
Article
Google Scholar
Nurulita Y, Adetutu EM, Gunawan H, Zul D, Ball AS (2016) Restoration of tropical peat soils: the application of soil microbiology for monitoring the success of the restoration process. Agriculture Ecosystems & Environment 216:293–303. https://doi.org/10.1016/j.agee.2015.09.031
Article
Google Scholar
Orwin KH, Dickie IA, Holdaway R, Wood JR (2018) A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions. Soil Biology and Biochemistry. https://doi.org/10.1016/j.soilbio.2017.10.036
Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Global Change Biology. https://doi.org/10.1111/j.1365-2486.2010.02279.x
Pancost RD, Damste JSS (2003) Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chemical Geology 195:29–58. https://doi.org/10.1016/S0009-2541(02)00387-X
CAS
Article
Google Scholar
Phillips S, Rouse GE, Bustin RM (1997) Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panama. Palaeogeography, Palaeoclimatology, Palaeoecology 128:301–338
Article
Google Scholar
Ramsey PW, Rillig MC, Feris KP, Holben WE, Gannon JE (2006) Choice of methods for soil microbial community analysis: PLFA maximizes power compared to CLPP and PCR-based approaches. Pedobiologia. https://doi.org/10.1016/j.pedobi.2006.03.003
Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC, Boca Raton
Book
Google Scholar
Roslev P, Iversen N (1999) Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Applied and Environmental Microbiology 65:4064–4070
CAS
Article
Google Scholar
Schouten S, Hopmans EC, Pancost RD, Damste JSS (2000) Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proceedings of the National Academy of Sciences of the United States of America 97:14421–14426. https://doi.org/10.1073/pnas.97.26.14421
CAS
Article
PubMed
PubMed Central
Google Scholar
Schouten S, van der Meer MTJ, Hopmans EC, Rijpstra WIC, Reysenbach AL, Ward DM, Damste JSS (2007) Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone national park. Applied and Environmental Microbiology 73:6181–6191. https://doi.org/10.1128/Aem.00630-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Singh BK, Tate KR, Kolipaka G, Hedley CB, Macdonald CA, Millard P, Murrell JC (2007) Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria. Applied and Environmental Microbiology 73:5153–5161. https://doi.org/10.1128/Aem.00620-07
CAS
Article
PubMed
PubMed Central
Google Scholar
Sjögersten S, Black CR, Evers S, Hoyos-Santillan J, Wright EL, Turner BL (2014) Tropical wetlands: a missing link in the global carbon cycle? Global biogeochemical cycles 28:1371–1386. https://doi.org/10.1002/2014gb004844
Article
PubMed
PubMed Central
Google Scholar
Sjögersten S, Cheesman AW, Lopez O, Turner LB (2011) Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104:147–163. https://doi.org/10.1007/s10533-010-9493-7
CAS
Article
Google Scholar
Smith TEL, Evers S, Yule CM, Gan JY (2018) In situ tropical Peatland fire emission factors and their variability, as determined by field measurements in peninsula Malaysia. Global Biogeochemical Cycles. https://doi.org/10.1002/2017GB005709
Tavi NM, Martikainen PJ, Lokko K, Kontro M, Wild B, Richter A, Biasi C (2013) Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using (CO2)-C-13 pulse-chase labelling combined with C-13-PLFA profiling. Soil Biology & Biochemistry 58:207–215. https://doi.org/10.1016/j.soilbio.2012.11.013
CAS
Article
Google Scholar
Thormann MN (2006) Diversity and function of fungi in peatlands: a carbon cycling perspective. Canadian journal of soil science 86:281–293. https://doi.org/10.4141/S05-082
CAS
Article
Google Scholar
Troxler TG, Ikenaga M, Scinto L, Boyer JN, Condit R, Perez R, Gann GD, Childers DL (2012) Patterns of soil Bacteria and canopy community structure related to tropical Peatland development. Wetlands 32:769–782. https://doi.org/10.1007/s13157-012-0310-z
Article
Google Scholar
Upton A, Vane CH, Girkin N, Turner BL, Sjögersten S (2018) Does litter input determine carbon storage and peat organic chemistry in tropical peatlands? Geoderma 326:76–87. https://doi.org/10.1016/j.geoderma.2018.03.030
CAS
Article
Google Scholar
Vanesa S, Carolina R, Alejandra RM, Gabriela C, Alicia G, Adriana AR, Sebastian F (2013) Fungal root colonization of Puccinellia frigida (Phil.) Johnston, a dominant grass species inhabiting the margins of high-altitude hypersaline Andean wetlands. Aquatic Botany 108:26–32. https://doi.org/10.1016/j.aquabot.2013.03.001
Article
Google Scholar
Wang YT, Qiu Q, Yang ZY, Hu ZJ, Tam NFY, Xin GR (2010) Arbuscular mycorrhizal fungi in two mangroves in South China. Plant and Soil 331:181–191. https://doi.org/10.1007/s11104-009-0244-2
CAS
Article
Google Scholar
Weijers JWH, Schouten S, Hopmans EC, Geenevasen JAJ, David ORP, Coleman JM, Pancost RD, Damste JSS (2006) Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environmental Microbiology 8:648–657. https://doi.org/10.1111/j.1462-2920.2005.00941.x
CAS
Article
PubMed
Google Scholar
White D, Bobbie R, King J, Nickels J, Amoe P (2009) Lipid analysis of sediments for microbial biomass and community structure, in: methodology for biomass determinations and microbial activities in sediments. 10.1520/stp38143s
Willers C, Jansen van Rensburg PJ, Claassens S (2015) Microbial signature lipid biomarker analysis - an approach that is still preferred, even amid various method modifications. Journal of Applied Microbiology. https://doi.org/10.1111/jam.12798
Wright EL, Black CR, Cheesman AW, Drage T, Large D, Turner BL, SjöGersten S (2011) Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland. Global Change Biology 17:2867–2881. https://doi.org/10.1111/j.1365-2486.2011.02448.x
Article
Google Scholar
Wright EL, Black CR, Cheesman AW, Turner BL, Sjögersten S (2013a) Impact of Simulated Changes in Water Table Depth on Ex Situ Decomposition of Leaf Litter from a Neotropical Peatland. Wetlands 33:217–226. https://doi.org/10.1007/s13157-012-0369-6
Article
Google Scholar
Wright EL, Black CR, Turner BL, Sjögersten S (2013b) Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland. Global Change Biology. https://doi.org/10.1111/gcb.12330
Xu ZY, Ban YH, Jiang YH, Zhang XL, Liu XY (2016) Arbuscular Mycorrhizal Fungi in wetland habitats and their application in constructed wetland: a review. Pedosphere 26:592–617. https://doi.org/10.1016/S1002-0160(15)60067-4
Article
Google Scholar
Yao HY, Chapman SJ, Thornton B, Paterson E (2015) C-13 PLFAs: a key to open the soil microbial black box? Plant and Soil 392:3–15. https://doi.org/10.1007/s11104-014-2300-9
CAS
Article
Google Scholar
Zhang ZH, Smittenberg RH, Bradley RS (2016) GDGT distribution in a stratified lake and implications for the application of TEX86 in paleoenvironmental reconstructions. Scientific reports 6. Artn 34465https://doi.org/10.1038/Srep34465
Zheng YH, Li QY, Wang ZZ, Naafs BDA, Yu XF, Pancost RD (2015) Peatland GDGT records of Holocene climatic and biogeochemical responses to the Asian monsoon. Organic Geochemistry 87:86–95. https://doi.org/10.1016/j.orggeochem.2015.07.012
CAS
Article
Google Scholar
Zhong S, Zeng HC, Jin ZQ (2015) Soil microbiological and biochemical properties as affected by different long-term Banana-based rotations in the tropics. Pedosphere 25:868–877
CAS
Article
Google Scholar