Skip to main content

Advertisement

Log in

Seasonal Differences in Plankton Community and Removal Efficiency of Nutrients and Organic Matter in a Subtropical Constructed Wetland

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The performance of free water surface flow constructed wetlands (CW) may be impaired by abiotic factors. The effects of seasons on the water quality improvement and on the community of plankton were evaluated in a CW system with the macrophytes Cyperus giganteus Vahl, Typha domingensis Pers., Eichhornia crassipes (Mart.) Solms and Pontederia cordata L. Water, plankton and macrophytes were sampled in the inflow and outflow during the dry and rainy seasons. Differences in temperature, precipitation, hydraulic loading rate (HLR), hydraulic retention time (HRT), inlet mass loadings and plant biomass between seasons affected the treatment efficiency. High precipitation and the consequent increase in HLR along with an increase in temperature and lower macrophyte biomass, were correlated to lower rates of removal efficiency during the rainy season. The season with higher macrophytes abundance coincided with high retention of zooplankton and solids. Higher nutrient levels in the dry season corresponded with a dominance and abundance of r-strategist planktonic species. To increase the removal efficiency of nutrients and organic matter by CW systems, care should be taken to decrease the HLR especially in periods of high precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong J, Armstrong W (1990) Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites-australis (cav.) Trin ex. Steud. The New Phytologist 114:121–128

    Article  Google Scholar 

  • Baptista JDC, Davenport RJ, Donnelly T, Curtis TP, Rayne D (2008) The microbial diversity of laboratory scale wetlands appears to be randomly assembled. Water Research 42(12):3182–3190

    Article  CAS  Google Scholar 

  • Bobbink R, Beltman B, Verhoeven JTA, Whigham DF (2008) Wetland functioning in relation to biodiversity conservation and restoration. In: Bobbink R, Beltman B, Verhoeven JTA, Whigham DF (eds) Wetlands: functioning, biodiversity, conservation and restoration. Springer-Verlag, Berlin

    Google Scholar 

  • Bonecker CC, Aoyagui ASM (2005) Relationships between rotifers, phytoplankton and bacterioplankton in the Corumba reservoir, Goiás State, Brazil. Hydrobiologia 546:415–421

    Article  Google Scholar 

  • Boutilier L, Jamieson R, Gordon R, Lake C, Hart W (2009) Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands. Water Research 43:4370–4380

    Article  CAS  PubMed  Google Scholar 

  • Boyd CE, Tucker CS (1992) Water quality and pond soil analyses for aquaculture. Agricultural Experiment Station, Alabama

    Google Scholar 

  • Bozkurt A, Guven SE (2009) Zooplankton composition and distribution in vegetated and unvegetated area of three reservoirs in Hatay, Turkey. Journal of Animal and Veterinary Advances 8(5):984–994

    Article  Google Scholar 

  • Chen HJ, Zamorano MF, Ivanoff D (2010) Effect of flooding depth on growth, biomass, photosynthesis, and chlorophyll fluorescence of Typha domingensis. Wetlands 30:957–965

    Article  Google Scholar 

  • Chung AKC, Wu Y, Tam NFY, Wong MH (2008) Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecological Engineering 32:81–89

    Article  Google Scholar 

  • Cuvin-Aralar ML, Focken U, Becker K, Aralar EV (2004) Effects of low nitrogen-phosphorus ratios in the phytoplankton community in Laguna de Bay, a shallow eutrophic lake in the Philippines. Aquatic Ecology 38(3):387–401

    Article  Google Scholar 

  • Dong Y, Wilinski PR, Dzakpasu M, Scholz M (2011) Impact of hydraulic loading rate and season on water contaminant reductions within integrated constructed wetlands. Wetlands 31:499–509

    Article  Google Scholar 

  • Eighmy TT, Bishop PL (1989) Distribution and role of bacterial nitrifying populations in nitrogen removal in aquatic treatment systems. Water Research 23(8):947–955

    Article  CAS  Google Scholar 

  • Ellery WN, Mccarthy TS, Smith ND (2003) Vegetation, hydrology and sedimentation patterns on the major distributary system of the Okavango Fan, Botswana. Wetlands 23(2):357–375

    Article  Google Scholar 

  • Golterman HL, Clymo RS, Ohnstad MAM (1978) Methods for physical and chemical analysis of freshwater. Blackwell, London

    Google Scholar 

  • Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Hadad HR, Maine MA, Bonetto CA (2006) Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 63(10):1744–1753

    Article  CAS  PubMed  Google Scholar 

  • Henry-Silva GG, Camargo AFM, Pezzato MM (2008) Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiology 610:153–160

    Article  CAS  Google Scholar 

  • Huszar VLM, Silva LHS, Marinho M, Domingos P, Sant’Anna CL (2000) Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. In: Reynolds CS, Dokulil M, Padisák J (eds) The trophic spectrum revisited: The influence of trophic state on the assembly of phytoplankton communities. Academic Publishers, Dordrecht, pp. 67–77

    Chapter  Google Scholar 

  • Izaguirre I, Sinistro R, O’Farrell I, Unrein F, Tell G (2001) Algal assemblages in anoxic relictual oxbow lakes from the Lower Paraná floodplain (Argentina). Nova Hedwigia 123:95–106

    Google Scholar 

  • Izaguirre I, O’Farrell I, Unrein F, Sinistro R, Afonso MD, Tell G (2004) Algal assemblages across a wetland, from a shallow lake to relictual oxbow lakes (Lower Parana River, South America). Hydrobiologia 511:25–36

    Article  CAS  Google Scholar 

  • Jeppesen E, Lauridsen TL, Kairesalo T, Perrow MR (1998) Impact of submerged macrophytes on fish–zooplankton interactions in lakes. In: Jeppesen E, Sønderaard M, Sondergaard M, Christoffersen K (eds) The structuring role of submerged macrophytes in lakes. Springer, New York, pp. 91–114

    Chapter  Google Scholar 

  • Kadlec RH (1999) Chemical, physical and biological cycles in treatment wetlands. Water Science and Technology 40:37–44

    Article  CAS  Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands. Taylor and Francis, Boca Raton

    Google Scholar 

  • Kaplan D, Bachelin M, Muñoz-Carpena R, Chacón WR (2011) Hydrological importance and water quality treatment potential of a small freshwater wetland in the humid tropics of Costa Rica. Wetlands 31:1117–1130

    Article  Google Scholar 

  • Karathanasis AD, Potter CL, Coyne MS (2003) Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecological Engineering 20:157–169

    Article  Google Scholar 

  • Katsenovich YP, Hummel-Batista A, Ravinet AJ, Miller JF (2009) Performance evaluation of constructed wetlands in a tropical region. Ecological Engineering 35:1529–1537

    Article  Google Scholar 

  • Kim JG, Rejmankova E, Spanglet HJ (2001) Implications of a sediment chemistry study on subalpine marsh conservation in the lake Tahoe Basin, USA. Wetlands 21(3):379–394

    Article  Google Scholar 

  • Kim DG, Park J, Lee D, Kang H (2011) Removal of nitrogen and phosphorus from effluent of a secondary wastewater treatment plant using a pond-marsh wetland system. Water, Air, and Soil Pollution 214:37–47

    Article  CAS  Google Scholar 

  • Koroleff F (1976) Determination of ammonia. In: Grasshoff K, Almgreen T (eds) Methods of seawater analysis. Verlag Chemie, New York, pp. 126–133

    Google Scholar 

  • Kuczynska-Kippen N (2007) Habitat choice in rotifera communities of three shallow lakes: impact of macrophyte substratum and season. Hydrobiologia 593:27–37

    Article  Google Scholar 

  • Lampert W, Sommer U (1997) Limnoecology. The ecology of lakes and streams. Oxford University Press, New York

    Google Scholar 

  • Lansac-Tôha FA, Velho LFM, Bonecker CC (2003) Influência de macrófitas aquáticas sobre a estrutura da comunidade zooplanctônica. In: Thomaz SM, Bini LM (eds) Ecologia e manejo de macrófitas aquáticas. Maringá, Eduem, pp. 231–242

    Google Scholar 

  • Li L, Li Y, Biswas DK, Nian Y, Jiang G (2008) Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Technology 99:1656–1663

    Article  CAS  PubMed  Google Scholar 

  • Lobo E, Leighton G (1986) Estructuras comunitarias de las fitocenosis planctonicas de los sistemas de desembocaduras de ríos y esteros de la zona central de Chile. Revista de Biología Marina y Oceanografía 22(1):1–29

    Google Scholar 

  • Lund JW, Kiplind C, Lecren ED (1958) The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11:143–170

    Article  Google Scholar 

  • Maine MA, Suñe N, Hadad H, Sánchez G, Bonetto C (2006) Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecological Engineering 26:341–347

    Article  Google Scholar 

  • Maltais-Landry G, Maranger R, Brisson J, Chazarenc F (2009) Nitrogen transformations and retention in planted and artificially aerated constructed wetlands. Water Research 43:535–545

    Article  CAS  PubMed  Google Scholar 

  • Mann CJ, Wetzel RG (2000) Hydrology of impounded lotic wetland–wetland sediment characteristics. Wetlands 20(1):23–32

    Article  Google Scholar 

  • McCune B, Mefford MJ (2006) PC-ORD. Multivariate Analysis of Ecological Data. Version 5.15

  • Mitsch WJ, Gosselink JG (2000) Wetlands. Wiley, New York

    Google Scholar 

  • Morgan NC, Backiel T, Bretschko G, Dunkan A, Hillbricht-Ilkowska A, Kajak Z, Kitchell JF, Larsson P, Leveque C, Nauwerck A, Schiemer F, Thorpe JE (1980) Secondary production. In: LeCren ED, Lowe-McConnell RH (eds) The functioning of freshwater ecosystems, International Biological Program v. 22. Cambridge University Press, Cambridge, pp. 247–340

    Google Scholar 

  • Norlin JI, Bayley SE, Ross LCM (2005) Submerged macrophytes, zooplankton and the predominance of low-over high-chlorophyll states in western boreal shallow-water wetlands. Freshwater Biology 50:868–881

    Article  Google Scholar 

  • Nusch EA (1980) Comparison of different method for chlorophyll and pheopigments determination. Archiv für Hydrobiologie 14:14–36

    CAS  Google Scholar 

  • O’Farrell I, Sinistro R, Izaguirre I, Unrein F (2003) Do steady state assemblages occur in shallow lentic environments from wetlands? Hydrobiologia 502:197–209

    Article  Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York, 165p

  • Prieto AI, Pichardo S, Jos A, Moreno I, Camean AM (2007) Time-dependent oxidative stress responses after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish (Oreochromis niloticus) under laboratory conditions. Aquatic Toxicology 84:337–345

    Article  CAS  PubMed  Google Scholar 

  • Reynolds CS (1984) Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14:111–142

    Article  Google Scholar 

  • Reynolds CS, Montecino V, Graf ME, Cabrera S (1986) Short-term dynamics of a Melosira population in the plankton of an impoundment in Central Chile. Journal of Plankton Research 8:715–740

    Article  Google Scholar 

  • Sherman BS, Webster IT, Jones GJ, Oliver RL (1998) Transition between Aulacoseira and Anabaena dominance in a turbid river weir pool. Limnology and Oceanography 43:1902–1915

    Article  CAS  Google Scholar 

  • Sinistro R, Izaguirre I, Asikian V (2006) Experimental study on the microbial plankton community in a South American wetland (Lower Paraná River Basin) and the effect of the light deficiency due to the floating macrophytes. Journal of Plankton Research 28(8):753–768

    Article  CAS  Google Scholar 

  • Sipaúba-Tavares LH, Favero EGP, Braga FMS (2002) Utilization of macrophyte biofilter in effluent from aquaculture: I. Floating plant. Brazilian Journal of Biology 62(4-a):713–723

    Article  Google Scholar 

  • StatSoft Inc (2007) Statistica: Data analysis software system, version 8.0. Available from <www.statsoft.com>

  • ter Braak C (1988) CANOCO - A FORTRAN Program for Canonical Community Ordination. Ministerie van Landbouw en Visserij. Groep Landbouwwiskunde, Wageningen, 95 pp

  • Thomaz SM, Cunha ER (2010) The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22(2):218–236

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Trang NTD, Konnerup D, Schierup HH, Chiem NH, Tuan LA, Brix H (2010) Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: effects of hydraulic loading rate. Ecological Engineering 36(4):527–535

    Article  Google Scholar 

  • Travaini-Lima F, Sipaúba-Tavares LH (2012) Efficiency of a constructed wetland for wastewaters treatment. Acta Limnologica Brasiliensia 24(3):255–265

    Article  Google Scholar 

  • Truu J, Nurk K, Juhanson J, Mander Ü (2005) Variation of microbiological parameters within planted soil filter for domestic wastewater treatment. Journal of Environmental Health 40:1191–1200

    CAS  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommung der quantitativen phytoplankton: methodik. Mitteilungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie 9:1–38

    Google Scholar 

  • Van Donk E, Van de Bund W (2002) Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72:261–274

    Article  Google Scholar 

  • Vymazal J, Kröpfelová L (2008) Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer, Dordrecht

    Book  Google Scholar 

  • Warfe DM, Barmuta LA (2004) Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141:171–178

    Article  PubMed  Google Scholar 

  • Wiebner A, Kuschk PK, Astner M, Stottmeister U (2002) Abilities of helophyte species to release oxygen into rhizosphere with varying redox conditions in laboratory-scale hydroponic systems. International Journal of Phytoremediation 1:1–15

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the São Paulo State Research Foundation - FAPESP (2008/56621-5 and 2010/50478-6) for its financial support. Thanks are also due to the working group of the Limnology and Plankton Production Laboratory, to Marcio Jesus Gonçalves and Mauro Marcelino for their aid in making and maintaining the CW system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Travaini-Lima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travaini-Lima, F., Milstein, A. & Sipaúba-Tavares, L.H. Seasonal Differences in Plankton Community and Removal Efficiency of Nutrients and Organic Matter in a Subtropical Constructed Wetland. Wetlands 36, 921–933 (2016). https://doi.org/10.1007/s13157-016-0804-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-016-0804-1

Keywords

Navigation