Skip to main content
Log in

The response of two submerged macrophytes and periphyton to elevated temperatures in the presence and absence of snails: a microcosm approach

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Global warming may affect snail–periphyton–macrophyte relationships in lakes with implications also for water clarity. We conducted a 40-day aquaria experiment to elucidate the response of submerged macrophytes and periphyton on real and artificial plants to elevated temperatures (3°C) under eutrophic conditions, with and without snails present. With snails, the biomass and length of Vallisneria spinulosa leaves increased more at the high temperature, and at both temperatures growth was higher than in absence of snails. The biomass of periphyton on V. spinulosa as well as on artificial plants was higher at the highest temperature in the absence but not in the presence of snails. The biomass of Potamogeton crispus (in a decaying state) declined in all treatments and was not affected by temperature or snails. While total snail biomass did not differ between temperatures, lower abundance of adults (size >1 cm) was observed at the high temperatures. We conclude that the effect of elevated temperature on the snail–periphyton–macrophyte relationship in summer differs among macrophyte species in active growth or senescent species in subtropical lakes and that snails, when abundant, improve the chances of maintaining actively growing macrophytes under eutrophic conditions, and more so in a warmer future with potentially denser growth of periphyton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson, D., 1994. Temperature and organism size – a biological law for ectotherms? Advances in Ecological Research 25: 1–58.

    Article  Google Scholar 

  • Brönmark, C., 1985. Interactions between macrophytes, epiphytes and herbivores: an experimental approach. Oikos 45: 26–30.

    Article  Google Scholar 

  • Brönmark, C., 1989. Interactions between epiphytes, macrophytes and freshwater snails: a review. Journal of Molluscan Studies 55: 299–311.

    Article  Google Scholar 

  • Brönmark, C., 1994. Effects of tench and perch on interactions in a freshwater, benthic food chain. Ecology 75: 1818–1828.

    Article  Google Scholar 

  • Brönmark, C. & J. E. Vermaat, 1998. Complex Fish–Snail–Epiphyton Interactions and Their Effects on Submerged Freshwater Macrophytes. The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 47–68.

    Book  Google Scholar 

  • Brönmark, C., S. P. Klosiewski & R. A. Stein, 1992. Indirect effects of predation in a freshwater, benthic food chain. Ecology 73: 1662–1674.

    Article  Google Scholar 

  • Carlsson, N. O., C. Brönmark & L. A. Hansson, 2004. Invading herbivory: the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 85: 1575–1580.

    Article  Google Scholar 

  • Cattaneo, A. & J. Kalff, 1986. The effect of grazer size manipulation on periphyton communities. Oecologia 69: 612–617.

    Article  Google Scholar 

  • Dillon, R. T., 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • González-Bergonzoni, I., M. Meerhoff, T. A. Davidson, F. Teixeira-de Mello, A. Baattrup-Pedersen & E. Jeppesen, 2012. Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15: 492–503.

    Article  Google Scholar 

  • Guariento, R. D., A. Caliman, F. A. Esteves, R. L. Bozelli, A. Enrich-Prast & V. F. Farjalla, 2009. Substrate influence and temporal changes on periphytic biomass accrual and metabolism in a tropical humic lagoon. Limnologica 39: 209–218.

    Article  CAS  Google Scholar 

  • Hough, R. A., M. D. Fornwall, B. J. Negele, R. L. Thompson & D. A. Putt, 1989. Plant community dynamics in a chain of lakes: principal factors in the decline of rooted macrophytes with eutrophication. Hydrobiologia 173: 199–217.

    Article  CAS  Google Scholar 

  • Huang, X. F., W. M. Chen & Q. M. Cai, 1999. Survey, observation and analysis of lake ecology. Standard Methods for Observation and Analysis in Chinese Ecosystem Research Network, Series V. Standards Press of China, Beijing (in Chinese).

  • Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. R. Perrow, 1998. Impact of submerged macrophytes on fish–zooplankton interactions in lakes. The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 91–114.

  • Jones, J. I. & C. D. Sayer, 2003. Does the fish–invertebrate–periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.

    Article  Google Scholar 

  • Kishi, D., M. Murakami, S. Nakano & K. Maekawa, 2005. Water temperature determines strength of top–down control in a stream food web. Freshwater Biology 50: 1315–1322.

    Article  Google Scholar 

  • Kosten, S., E. Jeppesen, V. L. M. Huszar, N. Mazzeo, E. H. Van Nes, E. T. H. M. Peeters & M. Scheffer, 2011. Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshwater Biology 56: 1540–1553.

    Article  Google Scholar 

  • Köhler, J., J. Hachoł & S. Hilt, 2010. Regulation of submersed macrophyte biomass in a temperate lowland river: interactions between shading by bank vegetation, epiphyton and water turbidity. Aquatic Botany 92: 129–136.

    Article  Google Scholar 

  • Li, K. Y., Z. W. Liu, Y. H. Hu & H. W. Yang, 2009. Snail herbivory on submerged macrophytes and nutrient release: implications for macrophyte management. Ecological Engineering 35: 1664–1667.

    Article  Google Scholar 

  • Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41: 195–224.

    Article  Google Scholar 

  • McKee, D., K. Hatton, J. W. Eaton, D. Atkinson, A. Atherton, I. Harvey & B. Moss, 2002. Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquatic Botany 74: 71–83.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. T. De Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Biomanipulation Tool for Water Management, Springer: 367–377.

  • Moss, B., S. Kosten, M. Meerhoff, R. W. Battarbee, E. Jeppesen, N. Mazzeo, K. Havens, G. Lacerot, Z. W. Liu, L. De Meester, H. Paerl & M. Scheffer, 2011. Allied attack: climate change and eutrophication. Inland Waters 1: 101–105.

    Article  Google Scholar 

  • Nicolle, A., P. Hallgren, J. Von Einem, E. S. Kritzberg, W. Graneli, A. Persson, C. Brönmark & L. A. Hansson, 2012. Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: a mesocosm study. Freshwater Biology 57: 684–695.

    Article  Google Scholar 

  • Patrick, D. A., N. Boudreau, Z. Bozic, G. S. Carpenter, D. M. Langdon, S. R. LeMay, S. M. Martin, R. M. Mourse, S. L. Prince & K. M. Quinn, 2012. Effects of climate change on late-season growth and survival of native and non-native species of watermilfoil (Myriophyllum spp.): implications for invasive potential and ecosystem change. Aquatic Botany 103: 83–88.

    Article  Google Scholar 

  • Phillips, G., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.

    Article  Google Scholar 

  • Roberts, E., J. Kroker, S. Körner & A. Nicklisch, 2003. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia 506: 525–530.

    Article  Google Scholar 

  • Rogers, K. & C. Breen, 1980. Growth and reproduction of Potamogeton crispus in a South African lake. Journal of Ecology 68: 561–571.

    Article  CAS  Google Scholar 

  • Rooney, N. & J. Kalff, 2000. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquatic Botany 68: 321–335.

    Article  Google Scholar 

  • Saitoh, M., K. Narita & S. Isikawa, 1970. Photosynthetic nature of some aquatic plants in relation to temperature. Botanical Magazine Tokyo 83: 10–12.

    Article  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Schriver, P., J. Bøgestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish–zooplanl phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biology 33: 255–270.

    Article  Google Scholar 

  • Sheridan, J. A. & D. Bickford, 2011. Shrinking body size as an ecological response to climate change. Nature Climate Change 1: 401–406.

    Article  Google Scholar 

  • Shurin, J. B., J. L. Clasen, H. S. Greig, P. Kratina & P. L. Thompson, 2012. Warming shifts top–down and bottom–up control of pond food web structure and function. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 3008–3017.

    Article  Google Scholar 

  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller, 2007. Climate Change 2007: The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

  • Strand, J. A. & S. E. Weisner, 2001. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). Journal of Ecology 89: 166–175.

    Article  Google Scholar 

  • Tarkowska-Kukuryk, M. & T. Mieczan, 2012. Effect of substrate on periphyton communities and relationships among food web components in shallow hypertrophic lake. Journal of Limnology 71: 279–290.

    Article  Google Scholar 

  • Thomas, J. D., 1990. Mutualistic interactions in freshwater modular systems with molluscan components. Advances in Ecological Research 20: 125–178.

    Article  Google Scholar 

  • Titus, J. E. & M. S. Adams, 1979. Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia 40: 273–286.

    Article  Google Scholar 

  • Trochine, C., M. E. Guerrieri, L. Liboriussen, T. L. Lauridsen & E. Jeppesen, 2014. Effects of nutrient loading, temperature regime and grazing pressure on nutrient limitation of periphyton in experimental ponds. Freshwater Biology 59: 905–917.

    Article  CAS  Google Scholar 

  • Underwood, G. J. C., J. D. Thomas & J. H. Baker, 1992. An experimental investigation of interactions in snail–macrophyte–epiphyte systems. Oecologia 91: 587–595.

    Article  Google Scholar 

  • Van Dijk, G. M., 1993. Dynamics and attenuation characteristics of periphyton upon artificial substratum under various light conditions and some additional observations on periphyton upon Potamogeton pectinatus L. Hydrobiologia 252: 143–161.

    Article  Google Scholar 

  • Wang, C., S. H. Zhang, P. F. Wang, J. Hou, W. Li & W. J. Zhang, 2008. Metabolic adaptations to ammonia-induced oxidative stress in leaves of the submerged macrophyte Vallisneria natans (Lour.) Hara. Aquatic Toxicology 87: 88–98.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H. J., B. Z. Pan, X. M. Liang & H. Z. Wang, 2006. Gastropods on submersed macrophytes in Yangtze lakes: community characteristics and empirical modelling. International Review of Hydrobiology 91: 521–538.

    Article  Google Scholar 

  • Wang, H. J., H. Z. Wang, X. M. Liang & S. K. Wu, 2014. Total phosphorus thresholds for regime shifts are nearly equal in subtropical and temperate shallow lakes with moderate depths and areas. Freshwater Biology. doi:10.1111/fwb.12372.

    Google Scholar 

  • Wojdak, J. M., 2005. Relative strength of top–down, bottom–up, and consumer species richness effects on pond ecosystems. Ecological Monographs 75: 489–504.

    Article  Google Scholar 

  • Wu, S. K., P. Xie, G. D. Liang, S. B. Wang & X. M. Liang, 2006. Relationships between microcystins and environmental parameters in 30 subtropical shallow lakes along the Yangtze River, China. Freshwater Biology 51: 2309–2319.

    Article  CAS  Google Scholar 

  • Xiong, W., D. Yu, Q. Wang, C. Liu & L. Wang, 2008. A snail prefers native over exotic freshwater plants: implications for the enemy release hypotheses. Freshwater Biology 53: 2256–2263.

    Google Scholar 

Download references

Acknowledgments

This study was supported by Wuhan Academic Leader Program (201051730562), CSC (The China Scholarship Council), CRES (Danish Strategic Research Council), CLEAR (a Villum Kann Rasmussen Centre of Excellence project), the EU-FP7 project REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No.: 244121) and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu). We thank both reviewers and the associate editor for their insightful comments on the paper. We thank Anne Mette Poulsen for valuable editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Additional information

Handling editor: Sidinei Magela Thomaz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Li, W. & Jeppesen, E. The response of two submerged macrophytes and periphyton to elevated temperatures in the presence and absence of snails: a microcosm approach. Hydrobiologia 738, 49–59 (2014). https://doi.org/10.1007/s10750-014-1914-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1914-5

Keywords

Navigation