Skip to main content

Advertisement

Log in

Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Salt minerals that are used to reconstruct paleoenvironments should be either primary or samples that provide primary-level information. Using hydrated sulfate minerals that are commonly found in saline lacustrine sediments (i.e., bloedite and polyhalite), the paleoenvironment of the Qaidam Basin, in the northeastern Tibetan Plateau was reconstructed. In this study, we determined the primary and secondary mineral formations based on their S, Mg, H, and O isotopic compositions. While polyhalite is a secondary mineral, bloedite precipitated out from the brine at 0.39 Ma, and ultimately became a secondary mineral at 0.36 Ma. The bloedite and polyhalite Mg isotopes did not record primary signals, but they still provide valuable insights into the paleoenvironments in which they formed. The climate in our study area is very dry; based on the temperature of the brine, this region experienced high temperatures at 0.39 Ma, 0.36 Ma, and 0.12 Ma. We identified one major chemical inconsistency: the bloedite 18O-hydrated water and 18O-SO4 values had basically achieved equilibrium, while the polyhalite and gypsum exhibited no oxygen exchange between their SO4 and hydrated water components. The possible reason for the inconsistency was the differences in mineral crystal structures. We hope that future studies will reconcile this conflicting information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antler G, Turchyn AV, Ono S, Sivan O, Bosak T (2017) Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochim Cosmochim Acta 203:364–380

    Article  Google Scholar 

  • BaliĆ-ŽuniĆ T, Birkedal R, Katerinopoulou A, Comodi P (2016) Dehydration of blődite, Na2Mg(SO4)2(H2O)4, and leonite, K2Mg(SO4)2(H2O)4. Eur J Mineral 28:33–42

    Article  Google Scholar 

  • Beinlich A, Mavromatis V, Austrheim H, Oelkers EH (2014) Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration—implications for the global Mg-cycle. Earth Planet Sci Lett 392:166–176

    Article  Google Scholar 

  • Bojar AV, Hałas S, Bojar H-P, Trembaczowski A (2019) Multiple isotope tracers from Permian-Triassic hydrated sulfates: implications for fluid-mineral interaction. BSGF - Earth Sci Bull 190:11

    Article  Google Scholar 

  • Bottrell SH, Newton RJ (2006) Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth Sci Rev 75:59–83

    Article  Google Scholar 

  • Chen K, Bowler JM (1986) Late Pleistocene evolution of salt lakes in the Qaidam basin, Qinghai province, China. Palaeogr Palaeoclimatol Palaeoecol 54:87–104

    Article  Google Scholar 

  • Chiba H, Sakai H (1985) Oxygen isotope exchange between dissolved sulfate and water at hydrothermal temperatures. Geochim Cosmochim Acta 49:993–1000

    Article  Google Scholar 

  • Comodi P, Stagno V, Zucchini A, Fei YW, Prakapenka V (2017) The compression behavior of blödite at low and high temperature up to ∼ 10 GPa: implications for the stability of hydrous sulfates on icy planetary bodies. Icarus 285:137–144

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Fan Q, Ma HZ, Tan HB, Xu JX, Li TW (2007) Characteristics and origins of brines in Western Qaidam Basin. Geochimica 36(6):633–637 ((in Chinese with English abstract))

    Google Scholar 

  • Fang XM, Zhang W, Meng Q, Gao J, Wang X, King J, Song C, Dai S, Miao Y (2007) High-resolution magneto-stratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Sci Lett 258:293–306

    Article  Google Scholar 

  • Freyer D, Voigt W (2003) Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatshefte für Chemie 134:693–719

    Article  Google Scholar 

  • Fritz P, Basharmal GM, Drimmie RJ, Ibsen J, Qureshi RM (1989) Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem Geol 79:99–105

    Google Scholar 

  • Galy A, Bar-Matthews M, Halicz L, Keith O’Nions R (2002) Mg isotopic composition of carbonate: insight from speleothem formation. Earth Planet Sci Lett 201:105–115

    Article  Google Scholar 

  • Grevel KD, Majzlan J (2009) Internally consistent thermodynamic data for magnesium sulfate hydrates. Geochim Cosmochim Acta 73:6805–6815

    Article  Google Scholar 

  • Han WX, Fang XM, Ye CC, Teng XH, Zhang T (2014) Tibet forcing Quaternary stepwise enhancement of westerly jet and central Asian aridification: carbonate isotope records from deep drilling in the Qaidam salt playa, NE Tibet. Glob Planet Change 116:68–75

    Article  Google Scholar 

  • Hardie LA, Lowenstein TK, Spencer RJ (1985) The problem of distinguishing between primary and secondary features in evaporites. In: 16th international symposium on salt, vol 1. Salt Institute, Alexandria, pp 11–39

  • Huang F, Zhang Z, Lundstrom CC, Zhi X (2011) Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochim Cosmochim Acta 75(12):3318–3334

    Article  Google Scholar 

  • Huang KJ, Teng FZ, Wei GJ, Ma JL, Bao ZY (2012) Adsorption- and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island. China Earth Planet Sci Lett 359–360:73–83

    Article  Google Scholar 

  • Huang KJ, Teng FZ, Shen B, Xiao SH, Lang XG, Ma HR, Fu Y, Peng YB (2016) Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation. PNAS 1607712113:1–6

    Google Scholar 

  • Gamazo P, Bea SA, Saaltink MW, Carrera J, Ayora C (2011) Modeling the interaction between evaporation and chemical composition in a natural saline system. J Hydrol 401:154–164

    Article  Google Scholar 

  • Ingerson E (1968) Origin and distribution of the elements, edited by Ahrens LH

  • Krupp RE (2005) Formation and chemical evolution of magnesium chloride brines by evaporite dissolution processes—implications for evaporite geochemistry. Geochim Cosmochim Acta 69(17):4283–4299

    Article  Google Scholar 

  • Last WM (1999). Geolimnology of the great plains of western Canada. In: Lemmen S, Vance RE (eds) Holocene climate and environmental change in the palliser triangle: a geoscientific context for evaluating the impacts of climate change on the southern Canadian prairies. Bulletin—Geological Survey of Canada, vol 534, pp 23–55

  • Last WM, Schweyen TH (1983) Sedimentology and geochemistry of saline lakes of the Great Plains. Hydrobiologia 105:245–263

    Article  Google Scholar 

  • Li MH, Fang XM, Yi CL, Gao SP, Zhang WL, Galy A (2010) Evaporite minerals and geochemistry of the upper 400 m sediments in a core from the Western Qaidam Basin, Tibet. Quat Int 218(1–2):176–189

    Article  Google Scholar 

  • Li WQ, Chakraborty S, Beard BL, Romanek CS, Johnson CM (2012) Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions. Earth Planet Sci Lett 333–334:304–316

    Article  Google Scholar 

  • Li MH, Fang XM, Wang JY, Song YG, Yang YB, Zhang WL, Liu XM (2013) Evaporite minerals of the lower 538.5 m sediments in a long core from the Western Qaidam Basin, Tibet. Quat Int 298:123–133

    Article  Google Scholar 

  • Li J, Li MH, Fang XM, Zhang GG, Zhang WL, Liu XM (2017) Isotopic composition of gypsum hydration water in deep Core SG-1, western Qaidam basin (NE Tibetan Plateau), implications for paleoclimatic evolution. Glob Planet Change 155:70–77

    Article  Google Scholar 

  • Li J, Li MH, Fang XM, Wang ZR, Zhang WL, Yang YB (2017) Variations and mechanisms of gypsum morphology along deep core SG-1, western Qaidam Basin (northeastern Tibetan Plateau). Quat Int 430:71–81

    Article  Google Scholar 

  • Li MH, Yan MD, Fang XM, Zhang ZJ, Wang ZR, Li J, Sun SR, Liu XM (2018) Origins of Mid-Cretaceous evaporate deposits of Sakhon Nakhon Basin in Laos: evidence from stable isotopes of halite. J Geochem Explor 184:209–222

    Article  Google Scholar 

  • Lindström N, Talreja T, Linnow K, Stahlbuhk A, Steiger M (2016) Crystallization behavior of Na2SO4–MgSO4 salt mixtures in sandstone and comparison to single salt behavior. Appl Geochem 69:50–70

    Article  Google Scholar 

  • Lowenstein TK, Spencer RJ, Pengxi Z (1989) Origin of ancient potash evaporites: clues from the modern nonmarine Qaidam Basin of western China. Science 245:1090–1092

    Article  Google Scholar 

  • Lu FH, Meyers WJ, Schoonen MA (2001) S and O(SO4) isotopes, simultaneous modeling, and environmental significance of the Nijar Messinian gypsum, Spain. Geochim Cosmochim Acta 65(18):3081–3092

    Article  Google Scholar 

  • Ma L, Lowenstein TL, Li B, Jiang P, Liu C, Zhong J, Sheng J, Qiu H, Wu H (2010) Hydrochemical characteristics and brine evolution paths of Lop Nor Basin, Xinjiang Province, Western China. Appl Geochem 25:1770–1782

    Article  Google Scholar 

  • Magee JW (1991) Late Quaternary lacustrine, groundwater, aeolian and pedogenic gypsum in the Prungle Lakes, southeastern Australia. Palaeogr Palaeoclimatol Palaeoecol 84:3–42

    Article  Google Scholar 

  • Mandernack KW, Krouse HR, Skei JM (2003) A stable sulfur and oxygen isotopic investigation of sulfur cycling in an anoxic marine basin, Framvaren Fjord Norway. Chem Geol 195:181–200

    Article  Google Scholar 

  • Mees F (2003) Salt mineral distribution patterns in soils of the Otjomongwa pan, Namibia. CATENA 54(3):425–437

    Article  Google Scholar 

  • Mees F, Castañda C, Herrero J, Van Ranst E (2011) Bloedite sedimentation in a seasonally dry saline lake (Salada Mediana, spain). Sediment Geol 238(1–2):106–115

    Article  Google Scholar 

  • Nielsen H (1972) Sulphur isotopes and the formation of evaporate deposits. In: Richter-Bernburg G (ed) Geology of saline deposits, earth science, pp 91–102

  • Owen LA, Finkel RC, Ma H, Barnard PL (2006) Late Quaternary landscape evolution in the Kunlun Mountains and Qaidam Basin, Northern Tibet: a framework for examining the links between glaciation, lake level changes and alluvial fan formation. Quat Int 154–155:73–86

    Article  Google Scholar 

  • Pena JA, Garcia-Ruiz JM, Marfil R, Prieto M (1982) Growth features of magnesium and sodium salts in a recent Playa Lac of La Mancha (Spain). Estudios Geol 38:245–257

    Google Scholar 

  • Pierre C (1985) Isotopic evidence for the dynamic redox cycle of dissolved sulphur compounds between free and interstitial solutions in marine salts pans. Chem Geol 53:191–196

    Article  Google Scholar 

  • Qiao C (1996) Discovery of bloedite in Yumen, Gansu province in China. J Gansu Sci (1):89–91 (in Chinese)

  • Raab M, Spiro B (1991) Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chem Geol Isotope Geosci Sect 86(4, 5):323–333

    Article  Google Scholar 

  • Rahimpour-Bonab H, Kalantarzadeh Z (2005) Origin of secondary potash deposits: a case from Miocene evaporites of NW Central Iran. J Asian Earth Sci 25:157–166

    Article  Google Scholar 

  • Richardson CD, Hinman NW, McHenry LJ, Kotler JM, Knipe DL, Scott JR (2012) Secondary sulfate mineralization and basaltic chemistry of craters of the Moon National Monument, Idaho: potential martian analog. Planet Space Sci 65:93–103

    Article  Google Scholar 

  • Saenger C, Wang Z (2014) Magnesium isotope fractionation in biogenic and abiogenic carbonates: implications for paleoenvironmental proxies. Quat Sci Rev 90:1–21

    Article  Google Scholar 

  • Sánchez-Moral S, Ordóñez S, García del Cura MA, Hoyos M, Cañaveras JC (1998) Penecon-temporaneous diagenesis in continental saline sediments : bloeditization in Quero playa lake (La Mancha, Central Spain). Chem Geol 149:189–207

    Article  Google Scholar 

  • Schorn A, Neubauer F, Bernroider M (2013) Polyhalite microfabrics in an Alpine evaporite mélange: Hallstatt, Eastern Alps. J Struct Geol 46:57–75

    Article  Google Scholar 

  • Schott J, Mavromatis V, Fujii T, Pearce CR, Oelkers EH (2016) The control of carbonate mineral Mg isotope composition by aqueous speciation: theoretical and experimental modeling. Chem Geol 445:120–134

    Article  Google Scholar 

  • Sinha R, Raymahashay BC (2004) Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India. Sediment Geol 166:59–71

    Article  Google Scholar 

  • Sőnmez I, Çelik M (2017) Recent bloedite from Shakl Lake, Çankırı-Çorum Basin, Turkey: a mineralogical and hydrogeochemical investigation. Carbon Evaporites 32:295–313

    Article  Google Scholar 

  • Song T, Wang X (1993) Structural styles and stratigraphic patterns of syndepositional faults in a contractional setting: examples from Qaidam basin, northwestern China. Am Assoc Petrol Geol Bull 77:102–117

    Google Scholar 

  • Steiger M (2016) The geochemistry of nitrate deposits: I. thermodynamics of Mg(NO3)2–H2O and solubilities in the Na+–Mg2+–NO3–SO42––H2O system. Chem Geol 436:84–97

    Article  Google Scholar 

  • Sun Z, Yang Z, Pei J, Ge X, Wang X, Yang T, Li W, Yuan S (2005) Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: implications for tectonic uplift and block rotation in northern Tibetan plateau. Earth Planet Sci Lett 237:635–646

    Article  Google Scholar 

  • Teng FZ, Li WY, Rudnick R, Gardner LR (2010) Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth Planet Sci Lett 300(1):63–71

    Article  Google Scholar 

  • Thode HG, Monster J, Dunford HB (1961) Sulphur isotope geochemistry. Geochim Cosmochim Acta 26:159–174

    Article  Google Scholar 

  • Tipper ET, Galy A, Gaillardet J, Bickle MJ, Elderfield H, Carder EA (2006) The magnesium isotope budget of the modern ocean: constraints from riverine magnesium isotope ratios. Earth Planet Sci Lett 250:241–253

    Article  Google Scholar 

  • Vargas Jentzsch P, Kampe B, Rösch P, Popp J (2011) Raman spectroscopic study of crystallization from solutions containing MgSO4 and Na2SO4: Raman spectra of double salts. J Phys Chem A 115:5540–5546

    Article  Google Scholar 

  • Wang JY, Fang XM, Appel E, Song CH (2012) Pliocene–Pleistocene climate change at the NE Tibetan plateau deduced from lithofacies variation in the drill core SG-1, Western Qaidam Basin, China. J Sediment Res 82(12):933–952

    Article  Google Scholar 

  • Wang HL, Li MH, Fang XM, Liu YX, Sun XR, Jin QZ (2018) Mineralogical and isotopic characteristic of bloedite in Qaidam Basin. J Mineral Petrol 12:2–20 ((in Chinese with English abstract))

    Google Scholar 

  • Warren JK (1989) Evaporite sedimentology: importance in hydrocarbon accumulation. Prentice Hall, Englewood Cliffs, pp 1–37

    Google Scholar 

  • Wimpenny J, Colla CA, Yin QZ, James R, Case WH (2014) Investigating the behaviour of Mg isotopes during the formation of clay minerals. Geochim Cosmochim Acta 128:178–194

    Article  Google Scholar 

  • Wollmann G, Seidel J, Voigt W (2009) Heat of solution of polyhalite and its analogues at T=298.15K. J Chem Thermodyn 41(4):484–488

    Article  Google Scholar 

  • Wortmann UG, Chernyavsky B, Bernasconi SM, Brunner B, Bőttcher ME, Swart PK (2007) Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochim Cosmochim Acta 71:4221–4242

    Article  Google Scholar 

  • Xiao Y (1995) Oxygen and hydrogen isotope research of different waters in Qarhan Salt Lake and lake sediments. J Xia’men Univ (Natural Science) 34(2):249–255 (in Chinese with English abstract)

    Google Scholar 

  • Yang YB (2013) Palaolake evolution and climate drying in the western Qaidam Basin since the late Pliocene archived by elemental geochemistry records in a 1000 m-long deep core. A dissertation submitted to University of Chinese Academy of Sciences For the degree of Doctor of Science (in Chinese with English abstract)

  • Zhang P (1987) Salt Lake of Qaidam Bain. Science Press, Beijing, pp 32–233 (in Chinese)

    Google Scholar 

  • Zhang JH (2010) Paleoclimate change in the middle and late Pleistocene revealed by the core CH0310 in the Qaidam Basin. Thesis of Master, Lanzou University (in Chinese with English abstract)

  • Zhang WL, Appel E, Fang XM, Song CH, Cirpka O (2012) Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications. Q Res 78(1):139–148

    Article  Google Scholar 

  • Zhu XK, Yue W, Yan B, Li J, Dong AG, Li ZH, Sun J (2013) Developments of non-traditional stable isotope geochemistry. Bull Mineral Petrol Geochem 32(6):651–688 ((in Chinese with English abstract))

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program of China (Grant no. 2017YFC0602803), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20020100, XDA20070101, XDA20070201), the National Natural Science Foundation of China (CTPES No. 41988101-01; 41831177 ), the Second Tibetan Plateau Scientific Expedition and Research (2019QZKK0202), and Cooperation project of the Chinese Academy of Sciences (Grant no. 131C11KYSB20160072). We would like to thank LetPub and the LetPub editors for their assistance in improving the English grammar of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Fang, X., Galy, A. et al. Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications. Carbonates Evaporites 35, 126 (2020). https://doi.org/10.1007/s13146-020-00660-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00660-y

Keywords

Navigation