Skip to main content
Log in

Statistical downscaling for daily precipitation in Korea using combined PRISM, RCM, and quantile mapping: Part 1, methodology and evaluation in historical simulation

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, we present the Parameter-elevation Relationships on Independent Slopes Model (PRISM)-based Dynamic downscaling Error correction (PRIDE) model, which is suitable for complex topographies, such as the Korean peninsula. The PRIDE model is constructed by combining the PRISM module, the Regional Climate Model (RCM) anomaly, and quantile mapping (QM) to produce high-resolution (1 km) grid data at a daily time scale. The results show that the systematic bias of the RCM was significantly reduced by simply substituting the climatological observational seasonal cycle at a daily timescale for each grid point obtained from the PRISM. QM was then applied to correct additional systematic bias by constructing the transfer functions under the cumulative density function framework between the model and observation using six types of transfer functions. K-fold cross-validation of the PRIDE model shows that the number of modeled precipitation days is approximately 90~121% of the number of observed precipitation days for the five daily precipitation classes, indicating that the PRIDE model reasonably estimates the observational frequency of daily precipitation under a quantile framework. The relative Mean Absolute Error (MAE) is also discussed in the framework of the intensity of daily precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baek, H.-J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pac. J. Atmos. Sci., 49, 603–618.

    Article  Google Scholar 

  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather map analysis. J. Appl. Meteor., 3, 396–409.

    Article  Google Scholar 

  • Boé, J., L. Terray, F. Habets, and E. Martin, 2007: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol., 27, 1643–1656.

    Article  Google Scholar 

  • Bordoy, R., and P. Burlando, 2013: Bias correction of regional climate model simulations in a region of complex orography. J. Appl. Meteor. Climatol., 52, 82–101.

    Article  Google Scholar 

  • Chen, S., J. O. Roads, H. H. Juang, and M. Kanamitsu, 1999: Global to regional simulations of California wintertime precipitation. J. Geophys. Res., 104, 31517–31532.

    Article  Google Scholar 

  • Christensen, J. H., F. Boberg, O. B. Christensen, and P. Lucas-Picher, 2008: On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett., 35, L20709.

    Article  Google Scholar 

  • Daly, C., E. H. Helmer, and M. Quinones, 2003: Mapping the climate of Puerto Rico, Vieques and Culebra. Int. J. Climatol., 23, 1359–1381.

    Article  Google Scholar 

  • Daly, C., 2006: Guidelines for assessing the suitability of spatial climate data sets. Int. J. Climatol., 26, 707–721.

    Article  Google Scholar 

  • Daly, C., W. Gibson, G. Taylor, G. Johnson, and P. Pasteris, 2002: A knowledge-based approach to the statistical mapping of climate. Clim. Res., 22, 99–113.

    Article  Google Scholar 

  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 2031–2064.

    Article  Google Scholar 

  • Fowler, H. J., S. Blenkinsop, and C. Tebaldi, 2007: Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol., 27, 1547–1578.

    Article  Google Scholar 

  • Giorgi, F., and L. O. Mearns, 1991: Approaches to the simulation of regional climate change: a review. Rev. Geophys., 29, 191–216.

    Article  Google Scholar 

  • Giorgi, F., and Coauthors, 2001: Regional climate information—evaluation and projections. In Climate Change 2001: the Scientific Basis. Cambridge University Press, 583–638.

    Google Scholar 

  • Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical Note: downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods. Hydrol. Earth Syst. Sci., 16, 3383–3390.

    Article  Google Scholar 

  • Harrold, T. I., F. H. S. Chiew, and L. Siriwardena, 2005: A method for estimating climate change impacts on mean and extreme rainfall and runoff. 16th International Congress on Modeling and Simulation, Melbourne, Australia, 497–504.

    Google Scholar 

  • Hellström, C., D. Chen, C. Achberger, and J. Räisänen, 2001: Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Clim. Res., 19, 45–55.

    Article  Google Scholar 

  • Hong, K.-O., M. S. Suh, D.-K. Rha, D.-H. Chang, C. Kim, and M.-K. Kim, 2007: Estimation of high resolution gridded temperature using GIS and PRISM. Atmosphere, 17, 255–268 (In Korean with English Abstract).

    Google Scholar 

  • Hong, S.-Y., N.-K. Moon, K.-S. Lim, and J.-W. Kim, 2010: Future Climate Change Scenarios over Korea Using a Multi-Nested Downscaling System: A Pilot Study. Asia-Pac. J. Atmos Sci, 46, 425–435.

    Article  Google Scholar 

  • Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos Sci, 50, 83–104.

    Article  Google Scholar 

  • Im E.-S., J.-B. Ahn, and D.-W. Kim, 2012a: An assessment of future dryness over Korea based on the ECHAM5-RegCM3 model chain under A1B emission scenario. Asia-Pac. J. Atmos Sci, 48, 325–337.

    Article  Google Scholar 

  • Im E.-S., B.-J. Lee, J.-H. Kwon, S.-R. In, and Han S.-O., 2012b: Potential increase of flood hazards in Korea due to global warming from a highresolution regional climate simulation. Asia-Pac. J. Atmos Sci, 48, 107–113.

    Article  Google Scholar 

  • IPCC, 2014: Climate Change: Synthesis report. Contribution of working groups I, II, and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 151 pp.

  • Ines, A. V. M., and J. W. Hansen, 2006: Bias correction of daily GCM rainfall for crop simulation studies. Agric. For. Meteorol., 138, 44–53.

    Article  Google Scholar 

  • Kiem, A. S., H. Ishidaira, H. P. Hapuarachchi, M. C. Zhou, Y. Hirabayashi, and K. Takeuchi, 2008: Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM. Hydrol. Process., 22, 1382–1394.

    Article  Google Scholar 

  • Kim, M.-K., I.-S. Kang, C.-K. Park, and K.-M. Kim, 2004: Super ensemble prediction of regional precipitation over Korea. Int. J. Climatol., 24, 777–790.

    Article  Google Scholar 

  • Kim, M.-K., M.-S. Han, D.-H. Jang, S.-G. Baek, W.-S. Lee, Y.-H. Kim, and S. Kim, 2012: Production technique of observation Grid data of 1km resolution. J. Clim. Res., 7, 55–68 (In Korean with English Abstract).

    Google Scholar 

  • Kim, M.-K., D.-H. Lee, and J. Kim, 2013: Production and validation of daily grid data with 1km resolution in South Korea. J. Clim. Res., 8, 13–25 (In Korean with English Abstract).

    Google Scholar 

  • Krishnamurti, T. N., and L. Bounoua, 1996: An Introduction to Numerical Weather Prediction Techniques. Boca Raton, FL: CRC Press, 293 pp.

    Google Scholar 

  • Lee J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2013: Assessment of Future Climate Change over East Asia Due to the RCP Scenarios Downscaled by GRIMs-RMP. Clim. Dynam., 42, 733–747.

    Article  Google Scholar 

  • Lehner, B., P. Döll, J. Alcamo, T. Henrichs, and F. Kaspar, 2006: Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Climatic Change, 75, 273–299.

    Article  Google Scholar 

  • Lenderink, G., A. van Ulden, B. van den Hurk, and F. Keller, 2007: A study on combining global and regional climate model results for generating climate scenarios of temperature and precipitation for the Netherlands. Clim. Dynam., 29, 157–176.

    Article  Google Scholar 

  • Maraun, D., and Coauthors, 2010: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    Article  Google Scholar 

  • Maraun, D., M. Widmann, R. Benestad, S. Kotlarski, R. Huth, E. Hertig, J. Wibig, and J. Gutierrez, 2013: VALUE - validating and integrating downscaling methods for climate change research. EGU Gen. Assem. Conf. Abstr., 15, 12041.

    Google Scholar 

  • Oh, J.-H., T. Kim, M.-K. Kim, S.-H. Lee, S.-K. Min, and W.-T. Kwon, 2004: Regional climate simulation for Korea using dynamic downscaling and statistical adjustment. J. Meteor. Soc. Japan, 82, 1629–1643.

    Article  Google Scholar 

  • Piani, C., J. O. Haerter, and E. Coppola, 2010a: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187–192.

    Article  Google Scholar 

  • Piani, C., G. P. Weedon, M. Best, S. M. Gomes, P. Viterbo, S. Hagemann, and J. O. Haerter, 2010b: Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol., 395, 199–215.

    Article  Google Scholar 

  • Raje, D., and P. P. Mujumdar, 2011: A comparison of three methods for downscaling daily precipitation in the Punjab region. Hydrol. Process., 25, 3575–3589.

    Article  Google Scholar 

  • Shin, S.-C., M.-K. Kim, M.-S. Suh, D.-H. Jang, C.-S. Kim, W.-S. Lee, and Y.-H. Kim, 2008: Estimation of high resolution gridded precipitation using GIS and PRISM. Atmosphere, 18, 71–81 (In Korean with English Abstract).

    Google Scholar 

  • Stephens, J. J., and J. M. Stitt, 1970: Optimum influence radii for interpolation with the method of successive corrections 1. Mon. Wea. Rev., 98, 680–687.

    Article  Google Scholar 

  • Suh M.-S., S.-G. Oh, D.-K. Lee, D.-H. Cha, S.-J. Choi, C.-S. Jin, and S.-Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Climate, 25, 7067–7082.

    Article  Google Scholar 

  • Sunyer, M. A., Y. Hundecha, D. Lawrence, H. Madsen, P. Willems, M. Martinkova, K. Vormoor, G. Bürger, M. Hanel, J. Kriauinien, A. Loukas, M. Osuch, and I. Yücel, 2015: Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci., 19, 1827–1847.

    Article  Google Scholar 

  • Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J. Hydrol., 456, 12–29.

    Article  Google Scholar 

  • Varis, O., T. Kajander, and R. Lemmelä, 2004: Climate and water: from climate models to water resources management and vice versa. Climatic Change, 66, 321–344.

    Article  Google Scholar 

  • Voltz, M., and R. Webster, 2006: A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. Eur. J. Soil Sci., 41, 473–490.

    Article  Google Scholar 

  • Wilby, R. L., and T. M. L. Wigley, 1997: Downscaling general circulation model output: a review of methods and limitations. Prog. Phys. Geogr., 21, 530–548.

    Article  Google Scholar 

  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189–216.

    Article  Google Scholar 

  • Zorita, E., and H. Von Storch, 1999: The Analog method as a simple statistical downscaling technique: comparison with more complicated methods. J. Climate, 12, 2474–2424.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maeng-Ki Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MK., Kim, S., Kim, J. et al. Statistical downscaling for daily precipitation in Korea using combined PRISM, RCM, and quantile mapping: Part 1, methodology and evaluation in historical simulation. Asia-Pacific J Atmos Sci 52, 79–89 (2016). https://doi.org/10.1007/s13143-016-0010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-016-0010-3

Key words

Navigation