Skip to main content
Log in

Carbon-to-chlorophyll ratio and carbon content of phytoplankton community at the surface in coastal waters adjacent to the Zhujiang River Estuary during summer

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Chlorophyll a (Chl a), particulate organic carbon (POC) and biogenic silica (BSi) were determined in coastal waters adjacent to the Zhujiang (Pearl) River Estuary (ZRE) during summer, in order to examine the C:Chl a ratio of phytoplankton and phytoplankton carbon in the plume-impacted coastal waters during summer, as well as to assess the relative contribution of diatoms to the phytoplankton biomass, by the regression between Chl a, POC and BSi. Our results showed that the C:Chl a ratio (g/g) of phytoplankton was high (up to 142), likely due to high light intensity and nutrient limitation. The river plume input stimulated phytoplankton growth, especially diatoms, resulting in higher relative contribution of phytoplankton carbon (55%) and diatoms (34%) to POC in the plume-impacted region than those (33% and 13%) in high salinity area, respectively. Phytoplankton carbon (up to 538 μg/L) in the plume-impacted region was much higher than that (<166 μg/L) in high salinity area. Our findings were helpful to improve the biogeochemical model in coastal waters adjacent to the ZRE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buck K R, Chavez F P, Campbell L. 1996. Basin-wide distributions of living carbon components and the inverted trophic pyramid of the central gyre of the North Atlantic Ocean, Summer 1993. Aquatic Microbial Ecology, 10(3): 283–4, doi: 10.3354/ame010283

    Article  Google Scholar 

  • Chan A T. 1980. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell-size. II. Relationship between photosynthesis, growth, and carbon/chlorophyll a ratio. Journal of Phycology, 16(3): 428–4, doi: 10.1111/j.1529-8817.1980.tb03056.x

    Article  Google Scholar 

  • Chang J, Shiah F K, Gong G C, et al. 2003. Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, Summe. 1998. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6-7): 1237–1247, doi: 10.1016/S0967-0645(03)00020-1

    Article  Google Scholar 

  • Cho B C, Azam F. 1990. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Marine Ecology Progress Series, 63: 253–259, doi: 10.3354/meps063253

    Article  Google Scholar 

  • Geider R J. 1993. Quantitative phytoplankton physiology: implications for primary production and phytoplankton growth. In: Proceedings of ICES Marine Science Symposium. Vol 197. Oxford: Oxford University Press, 52–62

    Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M. 1999. Methods of Seawater Analysis. 3rd ed. Weinheim: Wiley-VCH, 159–228

    Book  Google Scholar 

  • Hunter B L, Laws E A. 1981. ATP and chlorophyll a as estimators of phytoplankton carbon biomass. Limnology and Oceanography, 26(5): 944–4, doi: 10.4319/lo.1981.26.5.0944

    Article  Google Scholar 

  • Jakobsen H H, Markager S. 2016. Carbon-to-chlorophyll ratio for phytoplankton in temperate coastal waters: seasonal patterns and relationship to nutrients. Limnology and Oceanography, 61(5): 1853–4, doi: 10.1002/lno.10338

    Article  Google Scholar 

  • Laws E A, Bannister T T. 1980. Nutrient- and light-limited growth of thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnology and Oceanography, 25(3): 457–4, doi: 10.4319/lo.1980.25.3.0457

    Article  Google Scholar 

  • Li Q P, Hansell D A. 2008. Nutrient distributions in baroclinic eddies of the oligotrophic North Atlantic and inferred impacts on biology. Deep Sea Research Part II: Topical Studies in Oceanography, 55(10-13): 1291–1299, doi: 10.1016/j.dsr2.2008.01.009

    Article  Google Scholar 

  • Li Q P, Hansell D A, Zhang Jiazhong. 2008. Underway monitoring of nanomolar nitrate plus nitrite and phosphate in oligotrophic seawater. Limnology and Oceanography: Methods, 6(7): 319–4, doi: 10.4319/lom.2008.6.319

    Google Scholar 

  • Lü Shuguo, Wang Xuchen, Han Boping. 2009. A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll-a in Jiaozhou Bay, China. Chinese Journal of Oceanology and Limnology, 27(4): 793–4, doi: 10.1007/s00343-009-9221-0

    Article  Google Scholar 

  • Mao H L, Kan T C, Lan S F. 1963. A preliminary study of the Yangtze diluted water and its mixing processes. Oceanologia et Limnologia Sinica (in Chinese), 5(3): 183–4

    Google Scholar 

  • Meyers P A. 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114(3-4): 289–302, doi: 10.1016/0009-2541(94)90059-0

    Article  Google Scholar 

  • Neale P J, Cullen J J, Yentsch C M. 1989. Bio-optical inferences from chlorophyll a fluorescence: What kind of fluorescence is measured in flow cytometry?. Limnology and Oceanography, 34(8): 1739–4, doi: 10.4319/lo.1989.34.8.1739

    Article  Google Scholar 

  • Nelson D M, Tréguer P, Brzezinski M A et al. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9(3): 359–4, doi: 10.1029/95GB01070

    Article  Google Scholar 

  • Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical & Biological Methods for Seawater Analysis. Oxford: Pergamon Press, 101–104

    Book  Google Scholar 

  • Ragueneau O, Savoye N, Del Amo Y, et al. 2005. A new method for the measurement of biogenic silica in suspended matter of coastal waters: using Si: Al ratios to correct for the mineral interference. Continental Shelf Research, 25(5-6): 697–710, doi: 10.1016/j.csr.2004.09.017

    Article  Google Scholar 

  • Redalje D G, Laws E A. 1981. A new method for estimating phytoplankton growth rates and carbon biomass. Marine Biology, 62(1): 73–4, doi: 10.1007/BF00396953

    Article  Google Scholar 

  • Ren Jingling, Zhang Jing, Luo Jingqing, et al. 2001. Improved fluorimetric determination of dissolved aluminium by micelle-enhanced lumogallion complex in natural waters. Analyst, 126(5): 698–4, doi: 10.1039/b007593k

    Article  Google Scholar 

  • Small L F, Prahl F G. 2004. A particle conveyor belt process in the columbia river estuary: evidence from chlorophyll a and particulate organic carbon. Estuaries, 27(6): 999–4, doi: 10.1007/BF02803426

    Article  Google Scholar 

  • Taylor A H, Geider R J, Gilbert F J H. 1997. Seasonal and latitudinal dependencies of phytoplankton carbon-to-chlorophyll a ratios: results of a modelling study. Marine Ecology Progress Series, 152: 51–66, doi: 10.3354/meps152051

    Article  Google Scholar 

  • Tréguer P J, De La Rocha C L. 2013. The world ocean silica cycle. Annual Review of Marine Science, 5: 477–501, doi: 10.1146/an-nurev-marine-121211-172346

    Article  Google Scholar 

  • Vázquez-Domínguez E, Morán X A G, López-Urrutia A. 2013. Photoacclimation of picophytoplankton in the central Cantabrian Sea. Marine Ecology Progress Series, 493: 43–56, doi: 10.3354/meps10549

    Article  Google Scholar 

  • Wienke S M, Cloern J E. 1987. The phytoplankton component of seston in San Francisco Bay. Netherlands Journal of Sea Research, 21(1): 25–4, doi: 10.1016/0077-7579(87)90020-2

    Article  Google Scholar 

  • Xu Jie, Ho A Y T, Yin Kedong, et al. 2008. Temporal and spatial variations in nutrient stoichiometry and regulation of phytoplankton biomass in Hong Kong waters: influence of the Pearl River outflow and sewage inputs. Marine Pollution Bulletin, 57(6-12): 335–348, doi: 10.1016/j.marpolbul.2008.01.020

    Article  Google Scholar 

  • Yin Kedong, Qian Peiyuan, Chen J C et al. 2000. Dynamics of nutrients and phytoplankton biomass in the Pearl River Estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation. Marine Ecology Progress Series, 194: 295–305, doi: 10.3354/meps194295

    Article  Google Scholar 

  • Zeitzschel B. 1970. The quantity, composition and distribution of suspended particulate matter in the Gulf of California. Marine Biology, 7(4): 305–4, doi: 10.1007/BF00750823

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dongxiao Wang for providing the CTD data and Kedong Yin for providing POC/N data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Additional information

Foundation item: The National Natural Science Foundation of China under contract No. 41476137; the project of Qingdao National Laboratory for Marine Science and Technology under contract No. QNLM2016ORP0305.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Xu, J., Long, A. et al. Carbon-to-chlorophyll ratio and carbon content of phytoplankton community at the surface in coastal waters adjacent to the Zhujiang River Estuary during summer. Acta Oceanol. Sin. 39, 123–131 (2020). https://doi.org/10.1007/s13131-020-1556-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-020-1556-6

Key words

Navigation