Skip to main content
Log in

A particle conveyor belt process in the Columbia River estuary: Evidence from chlorophylla and particulate organic carbon

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Using both the photosynthetically active chlorophylla (chla) content of the organic carbon fraction of suspended particulate matter (chla/POC) and the percentage of photosynthetically, active chla in fluorometrically measured chla plus pheophytina (% chla), we determined that under specified hydrodynamic conditions, neap-spring tidal differentiation in particle dynamics could be observed in the Columbia River estuary. During summer time neap tides, when river discharge was moderate, bottom chla/POC remained relatively unchanged from riverine chla/POC over the full 0–30 psu salinity range, suggesting a benign trapping environment. During summertime spring tides, bottom chla/POC decreased at mid range salinities indicating resuspension of chla-poor POC during flood-ebb transitions. Bottom % chla during neap tides tended to average higher than that during spring tides, suggesting that neap particles were more recently hydrodynamically trapped than those on the spring tides. Such differentiation supported the possibility of operation of a particle conveyor belt process, a process in which low-amplitude neap tides favor selective particle trapping in estuarine turbidity maxima (ETM)., while high-amplitude spring tides favor particle resuspension from the ETM. Untrapped river-derived particles at the surface would continue through the estuary to the coastal ocean on the neap tide; during spring tide some particles eroded from the ETM would combine with unsettled riverine particles in transit toward the ocean. Because in tensified biogeochemical activity is associated with ETM, these neap-spring differences may be critical to maintenance and renewal of populations and processes in the estuary. Very high river discharge (15, 000 m3 s−1) tended to overwhelm neap-spring differences, and significant oceanic input during very low river discharge (5,000 m3 s−1) tended to do the same in the estuarine channel most exposed to ocean input. During heavy springtime phytoplankton blooms, development of a thick bottom fluff layer rich in chla also appeared to negate neapspring differentiation because spring tides apparently acted to resuspend the same rich bottom material that was laid down during neap tides. When photosynthetic assimilation numbers [μgC (μgchl,a)−1h−1] were measured across, the full salinity range, no neap-spring differences and no river discharge effects occurred, indicating that within our suite of measurements the compositional distinction of suspended particulate material was mainly a function of chla/POC, and to a lesser extent % chla. Even though these measurements suggest the existence of a conveyor belt process, proof of actual operation of this phenomenon requires scalar flux measurements of chla properties in and out of the ETM on both neap and spring tides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Admiraal, W., J. Beukema., andF. B. van Es. 1985. Seasonal fluctuations in the biomass and metabolic activity of bacterioplankton and phytoplankton in a well-mixed estuary: The Ems-Dollard (Wadden Sea).Journal of Plankton Research 7:877–890.

    Article  Google Scholar 

  • Anderson, G. C.. 1964. The seasonal and geographic distribution of primary productivity off the Washington and Oregon coasts.Limnology and Oceanography 9:284–302.

    Google Scholar 

  • Barnes, C. A., A. C. Duxbury, andB.-A. Morse. 1972. Circulation and selected properties of the Columbia River effluent at sea, p. 41–80.In A. T. Pruter and D. L. Alverson (eds.), The Columbia River Estuary and Adjacent Ocean Waters. University of Washington Press, Seattle, Washington.

    Google Scholar 

  • Baross, J. A., B. Crump, andC. A. Simenstad. 1994. Elevated ‘microbial loop’ activities in the Columbia River estuarine turbidity maximum, p. 459–464.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries: Implications from Science to Management. Olsen & Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Cancino, L. andR. Neves. 1999. Hydrodynamic and sediment suspension modeling in estuarine systems. Part II. Application to the Western Scheldt and Gironde estuaries.Journal of Marine Systems 22:117–131.

    Article  Google Scholar 

  • Cloern, J. E. 1991a. Annual variations in river flow and primary production in the south San Francisco Bay estuary, p. 91–96.In M., Elliot and D. Ducrotoy, (eds.), Estuaries and Coasts: Spatial and Temporal Intercomparisons. Olsen & Olsen, Fredensborg Denmark.

    Google Scholar 

  • Cloern, J. E.. 1991b. Tidal stirring and phytoplankton bloom dynamics in an estuary.Journal of Marine Research 49:203–221.

    Article  Google Scholar 

  • Cloern, J. E., A. E. Alpine, B. F. Cole, R. L. J. Wong, J. F. Arthur, andM. D. Ball. 1983. River discharge controls phytoplankton dynamics in the northern San Francisco Bay estuary.Estuarine, Coastal and Shelf Science 16:415–429.

    Article  Google Scholar 

  • Denant, V., A. Saliot andR. F. C. Mantoura. 1991. Distribution of algal chlorophyll and carotenoid pigments in a stratified estuary: The Krka River, Adriatic Sea.Marine Chemistry 32:285–297.

    Article  CAS  Google Scholar 

  • Eppley, R. W. 1972. Temperature and phytoplankton growth in the sea.Fishery Bulletin 70:1063–1085.

    Google Scholar 

  • Fain, A. M. W., D. A. Jay, D. G. Wilson, P. M. Orton, andA. M. Baptista. 2001. Seasonal, monthly and tidal patterns of particulate matter dynamics in the Columbia River estuary.Estuaries 24:770–786.

    Article  CAS  Google Scholar 

  • Filardo, M. J. andW. M. Dunstan. 1985. Hydrodynamic control of phytoplankton in low salinity waters of the James River estuary, Virginia.Estuarine, Coastal and Shelf Science 21:653–668.

    Article  CAS  Google Scholar 

  • Fisher, T. R., J. D. Hagy., andE. Rochelle-Newall. 1998. Dissolved and particulate organic carbon in Chesapeake Bay.Estuaries 21:215–229.

    Article  CAS  Google Scholar 

  • Fisher, T. R., L. W. Harding, Jr.,D. W. Stanley, andL. G. Ward. 1988. Phytoplankton., nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries,Estuarine, Coastal and Shelf Science 27:61–93.

    Article  CAS  Google Scholar 

  • Fuhrer, G. J., D. Q. Tanner, J. L. Morace, S. W. McKenzie, and K. A. Skach. 1996. Water quality of the Lower Columbia River Basin: Analysis of current and historical water-quality data through 1994. U. S. Geological Survey Water-Resources Investigations Report 95–4294. Portland, Oregon.

  • Harris, G. P. 1986. Phytoplankton Ecology. Structure, Function and Fluctuation. Chapman and Hall, London, U.K.

    Google Scholar 

  • Hickey, B., E. Lessard, P. MacCready, M. Kosro, J. Moum, J. Nash, W. Peterson, A. Baptista, D. Jay, E. Dever, K. Bruland, andR. Kudela. 2003. RISE: River Influence on Shelf Ecosystems.Newsletter of Coastal Ocean Processes 16:3–4.

    Google Scholar 

  • Jay, D. A., andJ. D. Musiak. 1996. Internal tidal asymmetry in channel flows: Origins and consequences., p. 219–258.In C. Pattiaratchi (ed.), Mixing Processes in Estuaries and Coastal Seas. Coastal and Estuarine Science Monograph. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Jay, D. A., P. Orton, D. J. Kay, A. Fain, and A. M. Baptista. 1999. Acoustic determination of sediment concentrations, settling velocities, horizontal transports and vertical fluxes in estuaries, p. 258–263.In S. P. Anderson, E. A. Terray J. A. Rizzoli White, and A. J. Williams III (eds.), Proceedings of the Institute of Electrical and Electronic Engineers Sixth Working Conference on Current Measurement, Institute of Electrical and Electronic Engineers Publications., Piscataway, New Jersey.

  • Jay D. A., R. J. Uncles, J. Largier, W. R. Geyer, J. Vallino, andW. R. Boynton. 1997. A review of recent developments in estuarine scalar flux estimation.Estuaries 20:262–280.

    Article  Google Scholar 

  • Klinkhammer, G. P., andJ. McManus. 2001. Dissolved manganese in the Columbia River estuary: Production in the water column.Geochimica et Cosmochimica Acta 65:2835–2841.

    Article  CAS  Google Scholar 

  • Landry, M. R. andB. M. Hickey (Eds.). 1989. Coastal Oceanography of Washington and oregon. Elsevier, New York.

    Google Scholar 

  • Landry, M. R., J. R. Postal, W. K. Peterson, andJ. Newman. 1989. Broad-scale distributional patterns of hydrographic variables on the Washington/Oregon shelf, p. 1–40.In M R. Landry and B. M. Hickey (eds.). Coastal Oceanography of Washington and oregon. Elsevier, New York.

    Chapter  Google Scholar 

  • Lara-Lara, J. R.. 1982. Primary biomass and production processes in the Columbia River estuary. Ph.D. Dissertation, Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Lara-Lara, J. R., B. E. Frey, andL. F. Small. 1990. Primary production in the Columbia River estuary. I. Spatial and temporal variability of properties.Pacific Science 44:17–37.

    CAS  Google Scholar 

  • Lucas, L. V., andJ. E. Cloern. 2002. Effects, of tidal shallowing and deepening on phytoplankton production dynamics: A modeling study.Estuaries 25:497–507.

    Article  Google Scholar 

  • McArdle, B. H. 2003., Lines, models, and errors: Regression in the field.Limnology and Oceanography 48:1363–1366.

    Google Scholar 

  • Moon, C., andW. M. Dunstan. 1990. Hydrodynamic trapping in the formation of the chlorophyll,a peak in turbid, very low salinity waters of estuaries.Journal of Plankton Research 12:323–3356.

    Article  Google Scholar 

  • Painchaud., J., andJ.-C. Therriault. 1985. Heterotrophic potential in the St. Lawrence estuary: distribution and controlling factors.Le Naturaliste Canadien 112:65–76.

    Google Scholar 

  • Pocklington, R., andF. C. Tan 1987 Seasonal and annual variations in the organic matter contributed by the St. Lawrence River to the Gulf of St. Lawrence.Geochimica Cosmochimica Acta 51:2579–2586.

    Article  CAS  Google Scholar 

  • Prahl, F. G., L. F. Small, andB. Eversmeyer. 1997. Biogeochemical characterization of suspended particulate matter in the Columbia River estuary.Marine Ecology Progress Series 160:173–184.

    Article  CAS  Google Scholar 

  • Pruter, A. T. andD. L. Alverson (eds.) 1972. The Columbia River Estuary and Adjacent Ocean Waters. University of Washington Press, Seattle, Washington.

    Google Scholar 

  • Reed, D. J. andJ. Donovan. 1994. The character and composition of the Columbia River estuarine turbidity maximum. p. 445–450.In K. R. Dyer and R. J. Orth (eds.) Changes in Fluxes in Estuaries: Implications from Science to Management. Olsen & Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Sellers, T. andP. A. Bukaveckas. 2003. Phytoplankton production in a large, regulated river: A modeling and mass balance assessment.Limnology and Oceanography 48:1476–1487.

    Article  Google Scholar 

  • Sherwood, C. R., andJ. S. Creager. 1990. Sedimentary geology of the Columbia River estuary.Progress in Oceanography 25:15–79.

    Article  Google Scholar 

  • Simenstad, C. A., D. A. Jay, D. J. Reed, F. G. Prahl, andL. F. Small. 1994a. Land-margin ecosystem research in the Columbia River estuary: An interdisciplinary approach to investigating couplings between hydrological, geochemical and ecological processes within estuarine turbidity, maxima, p. 437–444.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries: Implications from Science to Management. Olsen & Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Simenstad, C. A., C. A. Morgan, J. R. Cordell, andJ. A. Baross. 1994b. Flux, passive retention, and active residence of zooplankton in Columbia River estuarine turbidity maxima, p. 473–482.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes in Estuaries: Implications from Science to Management. Olsen & Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Sinclair, M., D. V. Subba Rao, andR. Couture. 1981. Phytoplankton temporal distributions in estuaries.Oceanologica Acta 4:239–246.

    Google Scholar 

  • Small, L. F. andH. C. Curl, Jr. 1972. Effects of Columbia River discharge on chlorophylla and light attenuation in the sea. p. 203–218.In A. T. Pruter and D. L. Alverson (eds.). The Columbia River Estuary and Adjacent Ocean Waters. University of Washington Press. Seattle, Washington.

    Google Scholar 

  • Small, L. F. andD. W. Menzies. 1981. Patterns of primary productivity and biomass in a coastal upwelling region.Deep-Sea Research 28:123–149.

    Article  Google Scholar 

  • Small, L. F. andS. R. Morgan. 1994. Phytoplankton attributes in the turbidity maximum of the Columbia River Estuary, USA, p. 465–472.In K. R. Dyer and R. J. Orth (eds.), Changes in Fluxes, in Estuaries: Implications from Science to Management. Olsen and Olsen, Fredensborg, Denmark.

    Google Scholar 

  • Small, L. F. andD. Ramberg. 1971. Chlorophylla, carbon and nitrogen in particles from a unique coastal environment, p. 475–492.In J. D. Costlow (ed.), Proceedings of the International Symposium on the Fertility of the Sea, Volume II. Gordon and Breach, New York.

    Google Scholar 

  • Strickland, J. D. H. andT. R. Parsons. 1972. A Practical Handbook of Seawater Analysis, 2nd edition. Bulletin 167, Fisheries Research Board of Canada, Ottawa, Canada.

    Google Scholar 

  • Sullivan, B. E., F. G. Prahl, L. F. Small, andP. A. Covert. 2001. Seasonality of phytoplankton production in the Columbia River: A neutral or anthropogenic pattern?.Geochimica Cosmochimica Acta 65:1125–1139.

    Article  CAS  Google Scholar 

  • Uncles, R. J., A. E. Easton, M. L. Griffiths, C. Harris, R. J. McHowland, R. S. King, A. W. Morris, andD. H. Plummer. 1998. Seasonality of the turbidity maximum in the Humber-Ouse estuary, UK.Marine Pollution Bulletin 37:206–215.

    Article  CAS  Google Scholar 

  • Welschmeyer, N. A., andC. J. Lorenzen. 1985. Chlorophyll budgets: Zooplankton grazing and phytoplankton growth in a temperate fjord and the central Pacific Ocean.Limnology and Oceanography 30:1–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence F. Small.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, L.F., Prahl, F.G. A particle conveyor belt process in the Columbia River estuary: Evidence from chlorophylla and particulate organic carbon. Estuaries 27, 999–1013 (2004). https://doi.org/10.1007/BF02803426

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803426

Keywords

Navigation