Skip to main content

Advertisement

Log in

Carbon biomass, carbon-to-chlorophyll a ratio and the growth rate of phytoplankton in Jiaozhou Bay, China

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Carbon biomass, carbon-to-chlorophyll a ratio (C:Chl a), and the growth rate of phytoplankton cells were studied during four seasonal cruises in 2017 and 2018 in Jiaozhou Bay, China. Water samples were collected from 12 stations, and phytoplankton carbon biomass (phyto-C) was estimated from microscope-measured cell volumes. The phyto-C ranged from 5.05 to 78.52 µg C/L in the bay, and it constituted a mean of 38.16% of the total particulate organic carbon in the bay. High phyto-C values appeared mostly in the northern or northeastern bay. Diatom carbon was predominant during all four cruises. Dinoflagellate carbon contributed much less (<30%) to the total phyto-C, and high values appeared often in the outer bay. The C:Chl a of phytoplankton cells varied from 11.50 to 61.45 (mean 31.66), and high values appeared in the outer bay during all four seasons. The phyto-C was also used to calculate the intrinsic growth rates of phytoplankton cells in the bay, and phytoplankton growth rates ranged from 0.56 to 1.96/d; the rate was highest in summer (mean 1.79/d), followed by that in fall (mean 1.24/d) and spring (mean 1.17/d), and the rate was lowest in winter (mean 0.77/d). Temperature and silicate concentration were found to be the determining factors of phytoplankton growth rates in the bay. To our knowledge, this study is the first report on phytoplankton carbon biomass and C:Chl a based on water samples in Jiaozhou Bay, and it will provide useful information for studies on carbon-based food web calculations and carbon-based ecosystem models in the bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data are available on request from the authors.

References

  • Ara K, Fukuyama S, Okutsu T, Nagasaka S, Shiomoto A. 2019. Seasonal variability in phytoplankton carbon biomass and primary production, and their contribution to particulate carbon in the neritic area of Sagami Bay, Japan. Plankton and Benthos Research, 14(4): 224–250.

    Article  Google Scholar 

  • Arteaga L, Pahlow M, Oschlies A. 2016. Modeled Chl:C ratio and derived estimates of phytoplankton carbon biomass and its contribution to total particulate organic carbon in the global surface ocean. Global Biogeochemical Cycles, 30(12): 1 791–1 810.

    Article  Google Scholar 

  • Boyd P W, Rynearson T A, Armstrong E A, Fu F X, Hayashi K, Hu Z X, Hutchins D A, Kudela R M, Litchman E, Mulholland M R, Passow U, Strzepek R F, Whittaker K A, Yu E, Thomas M K. 2013. Marine phytoplankton temperature versus growth responses from polar to tropical waters-outcome of a scientific community-wide study. PLoS One, 8(5): e63091.

    Article  Google Scholar 

  • Chang F H, Zeldis J, Gall M, Hall J. 2003a. Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf. Journal of Plankton Research, 25(7): 737–758.

    Article  Google Scholar 

  • Chang J, Shiah F K, Gong G C, Chiang K P. 2003b. Cross-shelf variation in carbon-to-chlorophyll a ratios in the East China Sea, summer 1998. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6–7): 1 237–1 247.

    Article  Google Scholar 

  • Cloern J E, Grenz C, Vidergar-Lucas L. 1995. An empirical model of the phytoplankton chlorophyll: carbon ratio-the conversion factor between productivity and growth rate. Limnology and Oceanography, 40(7): 1 313–1 321.

    Article  Google Scholar 

  • Crawford D W, Cefarelli A O, Wrohan I A, Wyatt S N, Varela D E. 2018. Spatial patterns in abundance, taxonomic composition and carbon biomass of nano- and microphytoplankton in Subarctic and Arctic Seas. Progress in Oceanography, 162: 132–159.

    Article  Google Scholar 

  • Eppley R W. 1972. Temperature and phytoplankton growth in the sea. Fishery Bulletin, 70(4): 1 063–1 085.

    Google Scholar 

  • Falkowski P G, Owens T G. 1980. Light—shade adaptation two strategies in marine phytoplankton. Plant Physiology, 66(4): 592–595.

    Article  Google Scholar 

  • Friedland K D, Stock C, Drinkwater K F, Link J S, Leaf R T, Shank B V, Rose J M, Pilskaln C H, Fogarty M J. 2012. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS One, 7(1): e28945.

    Article  Google Scholar 

  • Fu M Z, Wang Z L, Li Y, Li R X, Sun P, Wei X H, Lin X Z, Guo J S. 2009. Phytoplankton biomass size structure and its regulation in the Southern Yellow Sea (China): seasonal variability. Continental Shelf Research, 29(18): 2 178–2 194.

    Article  Google Scholar 

  • Geider R J. 1987. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytologist, 106(1): 1–34.

    Article  Google Scholar 

  • Gong G C, Chen Y L L, Liu K K. 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Research, 16(12): 1 561–1 590.

    Article  Google Scholar 

  • Graff J R, Milligan A J, Behrenfeld M J. 2012. The measurement of phytoplankton biomass using flow-cytometric sorting and elemental analysis of carbon. Limnology and Oceanography: Methods, 10(11): 910–920.

    Google Scholar 

  • Graff J R, Westberry T K, Milligan A J, Brown M B, Dall’Olmo G, van Dongen-Vogels V, Reifel K M, Behrenfeld M J. 2015. Analytical phytoplankton carbon measurements spanning diverse ecosystems. Deep Sea Research Part I: Oceanographic Research Papers, 102: 16–25.

    Article  Google Scholar 

  • Guo S J, Feng Y Y, Wang L, Dai M H, Liu Z L, Bai Y, Sun J. 2014. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Marine Ecology Progress Series, 516: 103–126.

    Article  Google Scholar 

  • Guo S J, Zhu M L, Zhao Z X, Liang J H, Zhao Y F, Du J, Sun X X. 2019. Spatial-temporal variation of phytoplankton community structure in Jiaozhou Bay, China. Journal of Oceanology and Limnology, 37(5): 1 611–1 624.

    Article  Google Scholar 

  • Harrison P J, Zingone A, Mickelson M J, Lehtinen S, Ramaiah N, Kraberg A C, Sun J, McQuatters-Gollop A, Jakobsen H H. 2015. Cell volumes of marine phytoplankton from globally distributed coastal data sets. Estuarine, Coastal and Shelf Science, 162: 130–142.

    Article  Google Scholar 

  • Hillebrand H, Dürselen C D, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2): 403–424.

    Article  Google Scholar 

  • Jakobsen H H, Carstensen J. 2011. FlowCAM: sizing cells and understanding the impact of size distributions on biovolume of planktonic community structure. Aquatic Microbial Ecology, 65(1): 75–87.

    Article  Google Scholar 

  • Jakobsen H H, Markager S. 2016. Carbon-to-chlorophyll ratio for phytoplankton in temperate coastal waters: seasonal patterns and relationship to nutrients. Limnology and Oceanography, 61(5): 1 853–1 868.

    Article  Google Scholar 

  • Jeong H J, Yoo Y D, Kim J S, Seong K A, Kang N S, Kim T H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Science Journal, 45(2): 65–91.

    Article  Google Scholar 

  • Kopczyńska E E, Fiala M. 2003. Surface phytoplankton composition and carbon biomass distribution in the Crozet Basin during austral summer of 1999: variability across frontal zones. Polar Biology, 27(1): 17–28.

    Article  Google Scholar 

  • Kruskopf M, Flynn K J. 2006. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytologist, 169(3): 525–536.

    Article  Google Scholar 

  • Legendre L, Michaud J. 1999. Chlorophyll a to estimate the particulate organic carbon available as food to large zooplankton in the euphotic zone of oceans. Journal of Plankton Research, 21(11): 2 067–2 083.

    Article  Google Scholar 

  • Li Q P, Franks P J S, Landry M R, Goericke R, Taylor A G. 2010. Modeling phytoplankton growth rates and chlorophyll to carbon ratios in California coastal and pelagic ecosystems. Journal of Geophysical Research: Biogeosciences, 115(G4): G04003.

    Article  Google Scholar 

  • Liu D Y, Sun J, Qian S B. 2002. Study on the phytoplankton in Jiaozhou Bay II: influence of the environmental factors to phytoplankton community. Journal of Ocean University of Qingdao, 32(3): 415–421. (in Chinese with English abstract)

    Google Scholar 

  • Liu X, Huang B Q, Huang Q, Wang L, Ni X B, Tang Q S, Sun S, Wei H, Liu S M, Li C L, Sun J. 2015. Seasonal phytoplankton response to physical processes in the southern Yellow Sea. Journal of Sea Research, 95: 45–55.

    Article  Google Scholar 

  • Lü S G, Wang X C, Han B P. 2009. A field study on the conversion ratio of phytoplankton biomass carbon to chlorophyll-a in Jiaozhou Bay, China. Chinese Journal of Oceanology and Limnology volume, 27(4): 793–805.

    Article  Google Scholar 

  • Marañón E, Holligan P M, Varela M, Mouriño B, Bale A J. 2000. Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 47(5): 825–857.

    Article  Google Scholar 

  • Menden-Deuer S, Lessard E J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography, 45(3): 569–579.

    Article  Google Scholar 

  • Örnólfsdóttir E B, Lumsden S E, Pinckney J L. 2004. Phytoplankton community growth-rate response to nutrient pulses in a shallow turbid estuary, Galveston Bay, Texas. Journal of Plankton Research, 26(3): 325–339.

    Article  Google Scholar 

  • Pinckney J L, Richardson T L, Millie D F, Paerl H W. 2001. Application of photopigment biomarkers for quantifying microalgal community composition and in situ growth rates. Organic Geochemistry, 32(4): 585–595.

    Article  Google Scholar 

  • Putland J N, Iverson R L. 2007. Phytoplankton biomass in a subtropical estuary: distribution, size composition, and carbon: chlorophyll ratios. Estuaries and Coasts, 30(5): 878–885.

    Article  Google Scholar 

  • Regaudie-de-Gioux A, Sal S, López-Urrutia Á. 2015. Poor correlation between phytoplankton community growth rates and nutrient concentration in the sea. Biogeosciences, 12(6): 1 915–1 923.

    Article  Google Scholar 

  • Sathyendranath S, Stuart V, Nair A, Oka K, Nakane T, Bouman H, Forget M H, Maass H, Platt T. 2009. Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea. Marine Ecology Progress Series, 383: 73–84.

    Article  Google Scholar 

  • Sherman E, Moore J K, Primeau F, Tanouye D. 2015. Temperature influence on phytoplankton community growth rates. Global Biogeochemical Cycles, 30(4): 550–559.

    Article  Google Scholar 

  • Shi X Y, Wang L S, Yang S M. 2015. Phytoplankton community of Jiaozhou Bay in winter 2010. Oceanologia et Limnologia Sinica, 46(2): 357–364. (in Chinese with English abstract)

    Google Scholar 

  • Shinada A, Ban S, Ikeda T. 2008. Seasonal changes in the planktonic food web off Cape Esan, southwestern Hokkaido, Japan. Plankton and Benthos Research (Japan), 3(1): 18–26.

    Article  Google Scholar 

  • Smith Jr W O, Nelson D M, Mathot S. 1999. Phytoplankton growth rates in the Ross Sea, Antarctica, determined by independent methods: temporal variations. Journal of Plankton Research, 21(8): 1 519–1 536.

    Article  Google Scholar 

  • Spaulding S A, Jewson D H, Bixby R J, Nelson H, McKnight D M. 2012. Automated measurement of diatom size. Limnology and Oceanography: Methods, 10(11): 882–890.

    Google Scholar 

  • Stel’makh L V, Babich I I, Tugrul S, Moncheva S, Stefanova K. 2009. Phytoplankton growth rate and zooplankton grazing in the western part of the Black Sea in the autumn period. Oceanology, 49(1): 83–92.

    Article  Google Scholar 

  • Sun J, Liu D Y, Qian S B. 1999. Study on phytoplankton biomass I. Phytoplankton measurement biomass from cell volume or plasma volume. Acta Oceanologica Sinica, 21 (2): 75–85. (in Chinese with English abstract)

    Google Scholar 

  • Sun J, Liu D Y, Qian S B. 2000. Estimating biomass of phytoplankton in the Jiaozhou Bay I. Phytoplankton biomass estimated from cell volume and plasma volume. Acta Oceanologica Sinica, 19(2): 97–110.

    Google Scholar 

  • Sun J, Liu D Y. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11): 1 331–1 346.

    Article  Google Scholar 

  • Sun X X, Sun S, Wu Y L, Zhang Y S, Zheng S. 2011a. Long-term changes of phytoplankton community structure in the Jiaozhou Bay. Oceanologia et Limnologia Sinica, 42(5): 639–646. (in Chinese with English abstract)

    Google Scholar 

  • Sun X X, Sun S, Zhang Y S, Zhang F. 2011b. Long-term changes of chlorophyll-a concentration and primary productivity in the Jiaozhou Bay. Oceanologia et Limnologia Sinica, 42(5): 654–661. (in Chinese with English abstract)

    Google Scholar 

  • Sun X X, Sun S. 2012. Phytoplankton size structure and its temporal and spatial changes in Jiaozhou Bay. Oceanologia et Limnologia Sinica, 43(3): 411–418. (in Chinese with English abstract)

    Google Scholar 

  • Tan S J. 2009. Preliminary Studies on Cascade Grazing of Mesozooplankton on Phytoplankton and Microzooplankton Community in the Jiaozhou Bay. Ocean University of China, Qingdao. (in Chinese)

    Google Scholar 

  • Utermöhl H. 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. SIL Communications, 1953–1996, 9(1): 1–38.

    Article  Google Scholar 

  • Wang X J, Borgne R L, Murtugudde R, Busalacchi A J, Behrenfeld M. 2009. Spatial and temporal variability of the phytoplankton carbon to chlorophyll ratio in the equatorial Pacific: a basin-scale modeling study. Journal of Geophysical Research, 114(C7): C07008.

    Article  Google Scholar 

  • Wu Y L, Sun S, Zhang Y S. 2005. Long-term change of environment and it’s influence on phytoplankton community structure in Jiaozhou Bay. Oceanologia et Limnologia Sinica, 36(6): 487–498. (in Chinese with English abstract)

    Google Scholar 

  • Xiao W P, Liu X, Irwin A J, Laws E A, Wang L, Chen B Z, Zeng Y, Huang B Q. 2018. Warming and eutrophication combine to restructure diatoms and dinoflagellates. Water Research, 128: 206–216.

    Article  Google Scholar 

  • Yang D F, Gao Z H, Sun P Y, Zhao B, Li M. 2006. Spatial and temporal variations of the primary production limited by nutrient silicon and water temperature in the Jiaozhou Bay. Advances in Marine Science, 24(2): 203–212. (in Chinese with English abstract)

    Google Scholar 

  • Yang S M, Wang L S, Shi X Y. 2014. Phytoplankton community of the Jiaozhou Bay in spring 2009. Oceanologia et Limnologia Sinica, 45(6): 1 234–1 240. (in Chinese with English abstract)

    Google Scholar 

  • Yang Y, Sun X X, Zhu M L, Luo X, Zheng S. 2017. Estimating the carbon biomass of marine net phytoplankton from abundance based on samples from China seas. Marine and Freshwater Research, 68(1): 106–115.

    Article  Google Scholar 

  • Yao Y, Zheng S Q, Shen Z L. 2007. Study on the mechanism of eutrophication in the Jiaozhou Bay. Marine Science Bulletin, 26(4): 91–98. (in Chinese with English abstract)

    Google Scholar 

  • Zhou W H, Yin K D, Long A M, Huang H, Huang L M, Zhu D D. 2012. Spatial-temporal variability of total and size-fractionated phytoplankton biomass in the Yangtze River Estuary and adjacent East China Sea coastal waters, China. Aquatic Ecosystem Health & Management, 15(2): 200–209.

    Article  Google Scholar 

  • Zhou Y P, Zhang Y M, Li F F, Tan L J, Wang J T. 2017. Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea. Science of the Total Environment, 574: 499–508.

    Article  Google Scholar 

  • Zonneveld C. 1998. A cell-based model for the chlorophyll a to carbon ratio in phytoplankton. Ecological Modelling, 113(1–3): 55–70.

    Article  Google Scholar 

Download references

Acknowledgement

We thank the crew and captain of the R/V Chuangxin for the logistic support during the cruise. Temperature, salinity, and transparency data were provided by the Jiaozhou Bay Marine Ecosystem Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Sun.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 31700425, 91751202), the External Cooperation Program of Chinese Academy of Sciences (No. 133137KYSB20200002), and the Taishan Scholars Project to Song SUN

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Zhao, Z., Liang, J. et al. Carbon biomass, carbon-to-chlorophyll a ratio and the growth rate of phytoplankton in Jiaozhou Bay, China. J. Ocean. Limnol. 39, 1328–1342 (2021). https://doi.org/10.1007/s00343-020-0234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-020-0234-z

Keyword

Navigation