Skip to main content

Advertisement

Log in

Integration of the nuclease protection assay with sandwich hybridization (NPA-SH) for sensitive detection of Heterocapsa triquetra

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Microalgae are photosynthetic microorganisms that function as primary producers in aquatic ecosystems. Some species of microalgae undergo rapid growth and cause harmful blooms in marine ecosystems. Heterocapsa triquetra is one of the most common bloom-forming species in estuarine and coastal waters worldwide. Although this species does not produce toxins, unlike some other Heterocapsa species, the high density of its blooms can cause significant ecological damage. We developed a H. triquetra species-specific nuclease protection assay sandwich hybridization (NPA-SH) probe that targets the large subunit of ribosomal RNA (LSU rRNA). We tested probe specificity and sensitivity with five other dinoflagellates that also cause red tides. Our assay detected H. triquetra at a concentration of 1.5×104 cells/mL, more sensitive than required for a red-tide guidance warning by the Korea Ministry of Oceans and Fisheries in 2015 (3.0×104 cells/mL). We also used the NPA-SH assay to monitor H. triquetra in the Tongyeong region of the southern sea area of Korea during 2014. This method could detect H. triquetra cells within 3 h. Our assay is useful for monitoring H. triquetra under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonella P, Luca G. 2013. The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species. Environ Sci Pollut Res, 20(10): 6851–6862

    Article  Google Scholar 

  • Archambault M C, Bricelj V M, Grant J, et al. 2004. Effects of suspended and sedimented clays on juvenile hard clams, Mercenaria mercenaria, within the context of harmful algal bloom mitigation. Mar Biol, 144(3): 553–565

    Article  Google Scholar 

  • Ayers K, Rhodes L L, Tyrrell J, et al. 2005. International accreditation of sandwich hybridisation assay format DNA probes for microalgae. New Zealand J Mar Freshw Res, 39(6): 1225–1231

    Article  Google Scholar 

  • Baek S H, Ki J S, Katano T, et al. 2011. Dense winter bloom of the dinoflagellate Heterocapsa triquetra below the thick surface ice of brackish Lake Shihwa, Korea. Phycol Res, 59(4): 273–285

    Article  Google Scholar 

  • Battocchi C, Totti C, Vila M, et al. 2010. Monitoring toxic microalgae Ostreopsis (dinoflagellate) species in coastal waters of the Mediterranean Sea using molecular PCR-based assay combined with light microscopy. Mar Pollut Bull, 60(7): 1074–1084

    Article  Google Scholar 

  • Cai Qingsong, Li Rongxiu, Zhen Yu, et al. 2006. Detection of two Prorocentrum species using sandwich hybridization integrated with nuclease protection assay. Harmful Algae, 5(3): 300–309

    Article  Google Scholar 

  • Chen Guofu, Liu Yang, Zhang Chunyun, et al. 2013. Development of rRNA-targeted probes for detection of Prorocentrum micans (Dinophyceae) using whole cell in situ hybridization. J Appl Phycol, 25(4): 1077–1089

    Article  Google Scholar 

  • Debelius B, Forja J M, DelValls Á, et al. 2009. Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf, 72(5): 1503–1513

    Article  Google Scholar 

  • Diercks S, Medlin L K, Metfies K. 2008a. Colorimetric detection of the toxic dinoflagellate Alexandrium minutum using sandwich hybridization in a microtiter plate assay. Harmful Algae, 7(2): 137–145

    Article  Google Scholar 

  • Diercks S, Metfies K, Medlin L K. 2008b. Molecular probe sets for the detection of toxic algae for use in sandwich hybridization formats. J Plankton Res, 30(4): 439–448

    Article  Google Scholar 

  • Ebenezer V, Medlin L K, Ki J S. 2012. Molecular detection, quantification, and diversity evaluation of microalgae. Mar Biotechnol, 14(2): 129–142

    Article  Google Scholar 

  • Godhe A, Otta S K, Rehnstam-Holm A S, et al. 2001. Polymerase chain reaction in detection of Gymnodinium mikimotoi and Alexandrium minutum in field samples from southwest India. Mar Biotechnol, 3(2): 152–162

    Article  Google Scholar 

  • Hyka P, Lickova S, Pribyl P, et al. 2013. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv, 31(1): 2–16

    Article  Google Scholar 

  • Jedlicki A, Fernández G, Astorga M, et al. 2012. Molecular detection and species identification of Alexandrium (Dinophyceae) causing harmful algal blooms along the Chilean coastline. AoB Plants, 2012: pls033

    Article  Google Scholar 

  • Jiang Liying, Ilag L L. 2014. Detection of endogenous BMAA in dinoflagellate (Heterocapsa triquetra) hints at evolutionary conservation and environmental concern. PubRaw Sci, 1(2): 1–8

    Google Scholar 

  • Ki J S, Han M S. 2006. A low-density oligonucleotide array study for parallel detection of harmful algal species using hybridization of consensus PCR products of LSU rDNA D2 domain. Biosens Bioelectron, 21(9): 1812–1821

    Article  Google Scholar 

  • Lee J Y, Han M S. 2007. Change of blooming pattern and population dynamics of phytoplankton in Masan bay, Korea. Journal of the Korean Society of Oceanography, 12(3): 147–158

    Google Scholar 

  • Lee C K, Lee O H, Lee S G. 2005. Impacts of temperature, salinity and irradiance on the growth of ten harmful algal bloom-forming microalgae isolated in Korean coastal waters. Journal of the Korean Society of Oceanography, 10(1): 79–91

    Google Scholar 

  • Lee C, Limand W. 2006. Variation of harmful algal blooms in Masan-Chinhae Bay. ScienceAsia, 32(S1): 51–56

    Article  Google Scholar 

  • Litaker R W, Tester P A, Duke C S, et al. 2002a. Seasonal niche strategy of the bloom-forming dinoflagellate Heterocapsa triquetra. Mar Ecol Prog Ser, 232: 45–62

    Article  Google Scholar 

  • Litaker R W, Warner V E, Rhyne C, et al. 2002b. Effect of diel and interday variations in light on the cell division pattern and in situ growth rates of the bloom-forming dinoflagellate Heterocapsa triquetra. Mar Ecol Prog Ser, 232: 63–74

    Article  Google Scholar 

  • Lu Songhui, Hodgkiss I J. 2004. Harmful algal bloom causative collected from Hong Kong waters. Hydrobiologia, 512(1–3): 231–238

    Article  Google Scholar 

  • Morel F M M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300(5621): 944–947

    Article  Google Scholar 

  • Naito K, Matsui M, Imai I. 2005. Ability of marine eukaryotic red tide microalgae to utilize insoluble iron. Harmful Algae, 4(6): 1021–1032

    Article  Google Scholar 

  • Park J, Jeong H J, Yoo Y D, et al. 2013. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae, 30(S1): S28–S40

    Article  Google Scholar 

  • Priyadarshani I, Rath B. 2012. Commercial and industrial applications of micro algae-a review. J Algal Biomass Utln, 3(4): 89–100

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, et al. 2006. Commercial applications of microalgae. J Biosci Bioeng, 101(2): 87–96

    Article  Google Scholar 

  • Suh S S, Park M, Hwang J, et al. 2016. Detection of the dinoflagellate, Cochlodinium polykrikoides, that forms algal blooms using sandwich hybridization integrated with nuclease protection assay. Biotechnol Lett, 38(1): 57–63

    Article  Google Scholar 

  • Tas S. 2015. A prolonged red tide of Heterocapsa triquetra (Ehrenberg) F. Stein (Dinophyceae) and phytoplankton succession in a eutrophic estuary in Turkey. Mediterr Mar Sci, 16(3): 621–627

    Article  Google Scholar 

  • Tyrrell J V, Connell L B, Scholin C A. 2002. Monitoring for Heterosigma akashiwo using a sandwich hybridization assay. Harmful Algae, 1(2): 205–214

    Article  Google Scholar 

  • Venugopalan C, Kapoor H C. 1997. Single step isolation of plant RNA. Phytochemistry, 46(8): 1303–1305

    Article  Google Scholar 

  • Xin Zeyu, Yu Zhigang, Wang Tanchun, et al. 2005. Identification and quantification of the toxic dinoflagellate Gymnodinium sp. with competitive enzyme-linked immunosorbent assay (cELISA). Harmful Algae, 4(2): 297–307

    Article  Google Scholar 

  • Zhen Yu, Mi Tiezhu, Yu Zhigang. 2008. Detection of Phaeocystis globosa using sandwich hybridization integrated with nuclease protection assay (NPA-SH). J Environ Sci, 20(12): 1481–1486

    Article  Google Scholar 

  • Zhen Yu, Mi Tiezhu, Yu Zhigang. 2009. Detection of several harmful algal species by sandwich hybridization integrated with a nuclease protection assay. Harmful Algae, 8(5): 651–657

    Article  Google Scholar 

  • Zhen Yu, Yu Zhigang, Cai Qingsong, et al. 2007. Detection of two diatoms using sandwich hybridization integrated with nuclease protection assay (NPA-SH). Hydrobiologia, 575(1): 1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taek-Kyun Lee.

Additional information

Foundation item: The Public Welfare & Safety Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning under contract No. NRF-2013M3A2A1067529.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M., Park, S.Y., Hwang, J. et al. Integration of the nuclease protection assay with sandwich hybridization (NPA-SH) for sensitive detection of Heterocapsa triquetra. Acta Oceanol. Sin. 37, 107–112 (2018). https://doi.org/10.1007/s13131-018-1167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-018-1167-7

Key words

Navigation