Skip to main content

Advertisement

Log in

Rapid detection of Salmonella contamination in seafoods using multiplex PCR

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Effective monitoring of Salmonella contamination in seafood processing to conform the requirements of HACCP is a great challenge today. Such challenges can be effectively addressed, if the conventional detection methods are replaced with DNA-based molecular methods. Accordingly, it was aimed to develop a robust PCR protocol for specific detection of Salmonella spp. Out of the different primers screened, one pair of primers developed in this study targeting invA gene demonstrated 100% inclusivity for a wide range of Salmonella serotypes and 100% exclusivity for wide range of non-target species. The in silico analysis of the nucleotide sequence obtained from the PCR product suggests its potential as a hybridization probe for genus specific detection of Salmonella spp. contamination. The PCR protocol was sensitive enough to detect 15 cells per reaction using crude DNA prepared within a short time directly from artificially contaminated shrimp tissue. The study demonstrated that the result of PCR reaction can come out on the same day of sample arrival. Incorporation of this pair of primers in a multiplex PCR designed for simultaneous detection of four common seafood-borne human pathogens yielded 147 bp, 302 bp, 403 bp, and 450 bp distinct DNA bands specifically targeting E. coli, toxigenic Vibrio cholerae, Salmonella spp., and V. parahaemolyticus, respectively in a single PCR tube. The PCR methods developed in this study has the potential to be used in the seafood processing plants for effective monitoring of CCPs required for implementation of HACCP-based quality assurance system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. USFDA (2011) FDA and EPA safety levels in regulations and guidance. In: Fish and fishery products hazards and controls guidance, fourth edition, appendix 5. FDA, CFSAN, pp. 439–442

  2. Bailey JL (1998) Detection of Salmonella cells within 24 to 26 hours in poultry samples with polymerase chain reaction BAX system. J Food Prot 61(7):792–795

    Article  CAS  Google Scholar 

  3. Hendriksen RS, Vieira AR, Karlsmose S, Fo L, Wong DM, Jensen AB, Wegener HC, Aarestrup FM (2011) Global monitoring of Salmonella serovar distribution from the WHO global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 8(8):887–900

    Article  Google Scholar 

  4. Choudhury M, Borah P, Sarma HK, Barkalita LM, Deka NK, Hussain I, Hussain M (2016) Multiplex-PCR assay for detection of some major virulence genes of Salmonella enterica serovars from diverse sources. Curr Sci (00113891), 111(7)

  5. Popoff MY, Bockemühl J, Brenner FW (1998) Supplement (no. 42) to the Kauffmann-white scheme. Res Microbiol 2000151(1):63–65

    Article  Google Scholar 

  6. Kwang J, Littledike ET, Keen JE (1996) Use of the polymerase chain reaction for Salmonella detection. Lett Appl Microbiol 22(1):46–51

    Article  CAS  Google Scholar 

  7. Abu-Salem FM, Arab EA (2010) Chemical properties, microbiological quality and sensory evaluation of chicken and duck liver paste (foiegras). Grasas Aceites 61(2):126–135

    Article  CAS  Google Scholar 

  8. Andrews WH, Hammack TS (2001) Salmonella. In: Bacteriological analytical manual online, official methods of analysis of AOAC international chapter 5. Center for food safety and applied nutrition, U.S.FDA (http://www.cfsan.fda.gov/~ebam/ bam-toc.Html)

  9. Malorny B, Hoorfar J, Bunge C, Helmuth R (2003) Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol 69(1):290–296

    Article  CAS  Google Scholar 

  10. Ausubel FM, Brent R, Kingstone RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Curr Protoc Mol Biol. John Wiley & Sons, Inc., USA

    Google Scholar 

  11. Rodriguez-Lazaro D, Gonzalez-García P, Delibato E, De Medici D, García-Gimeno RM, Valero A, Hernandez M (2014) Next day Salmonella spp. detection method based on real-time PCR for meat, dairy and vegetable food products. Int J Food Microbiol 184:113–120

    Article  CAS  Google Scholar 

  12. Cocolin L, Manzano M, Cantoni C, Comi G (1998) Use of polymerase chain reaction and restriction enzyme analysis to directly detect and identify Salmonella Typhimurium in food. J Appl Microbiol 85(4):673–677

    Article  CAS  Google Scholar 

  13. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(suppl_2):W71–W74

    Article  Google Scholar 

  14. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd ed., Vol. 1 and 2. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, pp 1.1–14.53

    Google Scholar 

  15. Olsen JE (2000) DNA-based methods for detection of food-borne bacterial pathogens. Food Res Int 33(3):257–266

    Article  CAS  Google Scholar 

  16. Tsen HY, Liou JW, Lin CK (1994) Possible use of a polymerase chain reaction method for specific detection of Salmonella in beef. J Ferment Bioeng 77(2):137–143

    Article  CAS  Google Scholar 

  17. Fitts R, Diamond M, Hamilton C, Neri M (1983) DNA-DNA hybridization assay for detection of Salmonella spp. in foods. Appl Environ Microbiol 46(5):1146–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  18. De la Cruz MA, Zhao W, Farenc C, Gimenez G, Raoult D, Cambillau C, Gorvel JP, Méresse SA (2013) Toxin-antitoxin module of Salmonella promotes virulence in mice. PLoS Pathog 9(12):e1003827. https://doi.org/10.1371/journal.ppat.1003827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Le ML, Popoff MY (1987) Designation of Salmonella enterica sp. nov., nom. Rev., as the type and only species of the genus Salmonella: request for an opinion. Int J Syst Evol Microbiol 37(4):465–468

    Google Scholar 

  20. Boyd EF, Wang FS, Whittam TS, Selander RK (1996) Molecular genetic relationships of the salmonellae. Appl Environ Microbiol 62(3):804–808

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fàbrega A, Vila J (2013) Salmonella enteric serovar typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26(2):308–341

    Article  Google Scholar 

  22. Chiu CH, Ou JT (1996) Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J Clin Microbiol 34(10):2619–2622

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pavlova B, Volf J, Ondrackova P, Matiasovic J, Stepanova H, Crhanova M, Karasova D, Faldyna M, Rychlik I (2011) SPI-1-encoded type III secretion system of Salmonella enterica is required for the suppression of porcine alveolar macrophage cytokine expression. Vet Res 42(1):16

    Article  CAS  Google Scholar 

  24. Galan JE, Ginocchio C, Costeas P (1992) Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J Bacteriol 174:4338–4349

    Article  CAS  Google Scholar 

  25. Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C, Curtiss RI, Gyles CL (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6(4):271

    Article  CAS  Google Scholar 

  26. Umesha S, Manukumar HM, Raghava SA (2016) Rapid method for isolation of genomic DNA from food-borne fungal pathogens. 3 Biotech; 6(2)

  27. Rossen L, Nørskov P, Holmstrøm K, Rasmussen OF (1992) Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions. Int J Food Microbiol 17(1):37–45

    Article  CAS  Google Scholar 

  28. Widjojoatmodjo MN, Fluit AC, Verhoef J (1995) Molecular identification of bacteria by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 33(10):2601–2606

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Roewer L (2013) DNA fingerprinting in forensics: past, present, future. Investig Genet.; 4

  30. De Medici D, Croci L, Delibato E, Di Pasquale S, Filetici E, Toti L (2003) Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype enteritidis in poultry. AEM 69(6):3456–3461

    Article  Google Scholar 

  31. Mukhopadhyay A, Mukhopadhyay UK (2007) Novel multiplex PCR approaches for the simultaneous detection of human pathogens: Escherichia coli 0157: H7 and Listeria monocytogenes. J Microbiol Methods 68(1):193–200

    Article  CAS  Google Scholar 

  32. Zhai L, Yu Q, Bie X, Lu Z, Lv F, Zhang C, Kong X, Zhao H (2014) Development of a PCR test system for specific detection of Salmonella Paratyphi B in foods. FEMS Microbiol Lett 355(1):83–89

    Article  CAS  Google Scholar 

  33. Ogunremi D, Nadin-Davis S, Dupras AA, Márquez IG, Omidi K, Pope L, Devenish J, Burke T, Allain R, Leclair D (2017) Evaluation of a multiplex PCR assay for the identification of Salmonella serovars Enteritidis and Typhimurium using retail and Abattoir samples. J Food Prot 80(2):295–301

    Article  CAS  Google Scholar 

  34. Yamasaki E, Sakamoto R, Matsumoto T, Maiti B, Okumura K, Morimatsu F, Balakrish Nair G, Kurazono H (2017) Detection of Cholera Toxin by an Immuno-chromatographic Test Strip. Microbial Toxins: Methods and Protocols :1–7

  35. Eschbach E, Martin A, Huhn J, Seidel C, Heuer R, Schumacher JH, Ulrich S, Axe JO, Konietzny A, Strauch E, Oberheitmann B (2017) Detection of enteropathogenic Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus: performance of real-time PCR kits in an interlaboratory study. Eur Food Res Technol :1–8

  36. Li, R, Chiou J, Chan EW, Chen S (2016) A novel PCR-based approach for accurate identification of Vibrio parahaemolyticus. Front Microbiol.;7

  37. Karus A, Ceciliani F, Bonastre AS, Karus V (2017) Development of simple multiplex real-time PCR assays for foodborne pathogens detection and identification on lightcycler. Mac Vet Rev 40(1):53–58

    Article  CAS  Google Scholar 

  38. Shimada T, Arakawa E, Itoh K, Okitsu T, Matsushima A, Asai Y, Takeda Y (1994) Extended serotyping scheme for Vibrio cholerae. Curr Microbiol 28(3):175–178

    Article  Google Scholar 

  39. Weynberg KD,Voolstra CR, Neave MJ, Buerger P, Van Oppen MJ (2015) From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci Rep;5

  40. Taniguchi H, Hirano H, Kubomura S, Higashi K, Mizuguchi Y (1986) Comparison of the nucleotide sequences of the genes for the thermostable direct hemolysin and the thermolabile hemolysin from Vibrio parahaemolyticus. Microb Pathog 1(5):425–432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to Indian Council of Agricultural Research (ICAR), New Delhi, for providing fellowship to undertake the research program. The authors are also thankful to the Director, CIFE, Mumbai, India, for providing necessary facility to conduct the research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brundaban Sahu.

Additional information

Responsible Editor: Luis Augusto Nero

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, B., Singh, S.D., Behera, B.K. et al. Rapid detection of Salmonella contamination in seafoods using multiplex PCR. Braz J Microbiol 50, 807–816 (2019). https://doi.org/10.1007/s42770-019-00072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00072-8

Keywords

Navigation