Skip to main content

Advertisement

Log in

A novel method to calculate climatic niche similarity among species with restricted ranges—the case of terrestrial Lycian salamanders

  • Methods and Applications
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Within the framework of the present study we test whether climatic niche similarity can be identified in a monophyletic group of species inhabiting remarkably restricted ranges by pooling presence data of all species into a single concatenated data set and subsequently jackknifing single species. We expect that, when the jackknifed species differs markedly in its climatic niche from all other species, this approach will result in increased niche homogeneity, allowing assessments of niche divergence patterns. To test our novel jackknife approach, we developed species distribution models for all members of Lycian salamanders (genus Lyciasalamandra), native to Turkey and the adjacent Aegean islands using Maxent. Degrees of niche similarity among species were assessed using Schoener’s index. Significance of results was tested using null-models. The degree of niche similarity was generally high among all seven species, with only L. helverseni differing significantly from the others. Carstic lime stones providing specific microhabitat features may explain the high degree of niche similarity detected, since the variables with the highest explanative power in our models (i.e. mean temperature, and precipitation of the coldest quarter) corresponded well with salamander natural history observations, supporting the biologically plausibility of the results. We conclude that the jackknife approach presented here for the first time allows testing for niche similarity in species inhabiting restricted ranges and with few species records available. Our results strongly support the view that detailed natural history information and knowledge of microhabitats is crucial when assessing possible climate change impacts on species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen, B. G., & Borns, H. W. (1994). The ice age world. Oslo: Scandinavia University Press.

    Google Scholar 

  • Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22, 42–47.

    Article  Google Scholar 

  • Araújo, M. B., Cabeza, M., Thullier, W., Hannah, L., & Williams, P. H. (2004). Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biol, 10, 1618–1626.

    Article  Google Scholar 

  • Araújo, M. B., Thuiller, W., & Pearson, R. G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography, 33, 1712–1728.

    Article  Google Scholar 

  • Beaumont, L. J., Hughes, L., & Poulsen, M. (2005). Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions. Ecological Modelling, 186, 250–269.

    Article  Google Scholar 

  • Beaumont, L. J., Gallagher, R. V., Thuiller, W., Downey, P. O., Leishman, M. R., & Hughes, L. (2009). Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 15, 409–420.

    Article  Google Scholar 

  • Beukema, W., de Pous, P., & Brakels, P. (2009). Remarks on the morphology and distribution of Lyciasalamandra luschani finikensis with the discovery of a new isolated population. Zeitschrift für Feldherpetologie, 16, 115–127.

    Google Scholar 

  • Bogaerts, S. (2004). Temperature tolerance of captive salamanders during a heat wave. Podarcis, 5, 15–22.

    Google Scholar 

  • Broennimann, O., Treier, U. A., Müller-Schärer, H., Thuiller, W., Peterson, A. T., & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701–709.

    Article  PubMed  CAS  Google Scholar 

  • Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Thuiller, W., et al. (2011). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography. doi:10.1111/j.1466-8238.2011.00698.x.

  • Busby, J. R. (1991). BIOCLIM—a bioclimatic analysis and prediction system. In C. R. Margules & M. P. Austin (Eds.), Nature conservation, cost effective biological surveys and data analysis (pp. 64–68). Melbourne: CSIRO.

    Google Scholar 

  • Dormann, C. F., McPherson, J., Araújo, M. B., Bivand, R., Bollinger, J., Carl, G., et al. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data, a review. Ecography, 30, 609–628.

    Article  Google Scholar 

  • Eleftherakos, K., Sotiropoulos, K., & Polymeni, R. M. (2007). Conservation units in the insular endemic salamander Lyciasalamandra helverseni (Urodela, Salamandridae). Annales Zoologici Fennici, 44, 387–399.

    Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species´ distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57.

    Article  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.

    Article  Google Scholar 

  • Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J., & Dunn, R. R. (2007). The biogeography of prediction error, why does the introduced range of the fire ant over-predict its native range? Global Ecology and Biogeography, 16, 24–33.

    Article  Google Scholar 

  • Fitzpatrick, M. C., Dunn, R. R., & Sanders, N. J. (2008). Data sets matter, but so do evolution and ecology. Global Ecology and Biogeography, 17, 562–565.

    Article  Google Scholar 

  • Gautier, P., Olgun, K., Üzüm, N., & Miaud, C. (2006). Gregarious behaviour in a salamander: attraction to conspecific chemical cues in burrow choice. Behavioral Ecology and Sociobiology, 59, 836–841.

    Article  Google Scholar 

  • Giovanelli, J. G. R., Siqueira, M. F., Haddad, C. F. B., & Alexandrino, J. (2010). Modelling a spatially restricted distribution in the Neotropics, how the size of calibration area affects the performance of five presence-only methods. Ecological Modelling, 221, 215–224.

    Article  Google Scholar 

  • Graham, C. H., Ron, S. R., Santos, J. C., Schneider, C. J., & Moritz, C. (2004). Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution, 58, 1781–1793.

    PubMed  Google Scholar 

  • Guisan, A., & Zimmermann, N. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.

    Article  Google Scholar 

  • Haccou, P., Meelis, E. (1994). Statistical analyses of behavioural data. Oxford University Press.

  • Hawkins, B. A., Diniz-Filho, J. A. F., Jaramillo, C. A., & Soeller, S. A. (2006). Post-Eocene climate change, niche conservatism, and the latitudinal diversity gradient of New World birds. Journal of Biogeography, 33, 770–780.

    Article  Google Scholar 

  • Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress Physical Geography, 30, 751–777.

    Article  Google Scholar 

  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography, 29, 773–785.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005a). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Hijmans, R.J., Guarino, L., Jarvis, A., O'Brien, R., Mathur, P., Bussink, C., Cruz, M., Barrantes, I., Rojas, E. (2005b). Diva-GIS version 5.2 manual. International Potatoe Center, Lima, Peru.

  • Holt, R. D., & Gomulkiewicz, R. (2004). Conservation implications of niche conservatism and evolution in heterogeneous environments. In R. Ferriere, U. Dieckmann, & D. Couvet (Eds.), Evolutionary conservation biology (pp. 244–264). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Holt, R.D., Barfield, M., Gomulkiewicz, R. (2005). Theories of niche conservatism and evolution, could exotic species be potential tests? In D. Sax, J. Stachowicz, S.D. Gaines, (Ed.), Species invasions, insight into ecology, evolution, and biogeography. Sinauer, Sunderland, MA, pp. 259–290.

  • Jakob, S. S., Heibl, C., Rödder, D., & Blattner, F. R. (2010). Population demography influences climate niche evolution, evidence from diploid American Hordeum species (Poaceae). Molecular Ecology, 19, 1423–1438.

    Article  PubMed  Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physics Review, 106, 620–630.

    Article  Google Scholar 

  • Jeschke, J. M., & Strayer, D. L. (2008). Usefulness of bioclimatic models for studying climate change and invasive species. Annals of the New York Academy of Sciences, 1134, 1–24.

    Article  PubMed  Google Scholar 

  • Johannesen, J., Johannesen, B., Griebeler, E. M., Baran, I., Tunc, M. R., & Veith, M. (2006). Distortion of symmetrical introgression in a hybrid zone, evidence for locus-specific selection and uni-directional range expansion. Journal of Evolutionary Biology, 19, 705–716.

    Article  PubMed  CAS  Google Scholar 

  • Klewen, R. (1991). Die Landsalamander Europas, Teil 1. Die Neue Brehm-Bücherei, Hohenwarsleben.

  • Kozak, K., & Wiens, J. J. (2006). Does niche conservatism promote speciation? A case study in North American salamanders. Evolution, 60, 2604–2621.

    PubMed  Google Scholar 

  • Kozak, K. H., Graham, C. H., & Wiens, J. J. (2008). Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology & Evolution, 23, 141–148.

    Article  Google Scholar 

  • Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385–393.

    Article  Google Scholar 

  • Marténez-Meyer, E., Peterson, A. T., & Hargrove, W. W. (2004). Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology Biogeography, 13, 305–314.

    Article  Google Scholar 

  • Nix, H. (1986). A biogeographic analysis of Australian elapid snakes. In R. Longmore (Ed.), Atlas of elapid snakes of Australia (pp. 4–15). Canberra: Bureau of Flora and Fauna.

    Google Scholar 

  • Özeti, N., & Atatür, M. K. (1979). A preliminary survey of the serum proteins of a population of Mertensiella luschani finikensis Başoğlu and Atatür, 1975 from Finike in southwestern Anatolia. Istanbul UniversityJournal of the Faculty of Science, 44B, 23–29.

    Google Scholar 

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.

    Article  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23, 149–158.

    Article  Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records, a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.

    Article  Google Scholar 

  • Peterson, A. T., & Nakazawa, Y. (2008). Environmental data sets matter in ecological niche modelling, an example with Solenopsis invicta and Solenopsis richteri. Global Ecology & Biogeography, 17, 135–144.

    Google Scholar 

  • Peterson, A. T., Soberon, J., & Sánchez-Cordero, V. (1999). Conservation of ecological niches in evolutionary time. Science, 285, 1265–1267.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, S. J. (2008). Transferability, sample selection bias and background data in presence-only modelling, a response to Peterson et al. (2007). Ecography, 31, 272–278.

    Article  Google Scholar 

  • Phillips, S. J., & Dudík, M. (2008). Modelling of species distributions with Maxent, new extensions and comprehensive evaluation. Ecography, 31, 161–175.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., et al. (2009). Sample selection bias and presence-only distribution models, implications for background and pseudo-absence data. Ecological Applications, 19, 181–197.

    Article  PubMed  Google Scholar 

  • Polymeni, R. M. (1994). On the biology of Mertensiella luschani (Steindachner, 1981): a review. Mertensiella, 4, 301–314.

    Google Scholar 

  • Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Rödder, D., & Engler, J.O. (2011). Quantitative metrics of overlaps in Grinnellian niches, advances and possible drawbacks. Global Ecology & Biogeography doi:10.1111/j.1466-8238.2011.00659.x

  • Rödder, D., & Lötters, S. (2009). Niche shift versus niche conservatism? Climatic characteristics within the native and invasive ranges of the Mediterranean housegecko (Hemidactylus turcicus). Global Ecology & Biogeography, 18, 674–687.

    Article  Google Scholar 

  • Rödder, D., Schlüter, A., & Lötters, S. (2009a). Is the 'Lost World' lost? High endemism of the South American tepuis in a changing climate. In J. C. Habel & T. Assmann (Eds.), Relict species. Phylogeography and conservation biology (pp. 401–416). Berlin: Springer.

    Google Scholar 

  • Rödder, D., Schmidtlein, S., Veith, M., & Lötters, S. (2009b). Alien invasive slider turtle in unpredicted habitat, a matter of niche shift or of predictors studied? PloS One, 4, e7843.

    Article  PubMed  Google Scholar 

  • Schoener, T. W. (1968). Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704–726.

    Article  Google Scholar 

  • Schwartz, M. W., Iverson, L. R., Prasad, A. M., Matthews, S. N., & O’Connor, R. J. (2006). Predicting extinctions as a result of climate change. Ecology, 87, 1611–1615.

    Article  PubMed  Google Scholar 

  • Steinfartz, S., & Mutz, T. (1998). Mertensiella luschani (Steindachner, 1891) - Lykischer Salamander, Kleinasiatischer Salamander, In K. Grossenbacher, B. Thiesmeier (Ed.), Handbuch der Reptilien und Amphibien Europas, vol. 4/1, Schwanzlurche. Aula: Wiesbaden, pp. 367–397.

  • Swets, K. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Science USA, 102, 8245–8250.

    Article  CAS  Google Scholar 

  • Tok, C. V., Mosungolu, M., Ayaz, D., Cicek, K., & Gül, C. (2009). Hematology of the Lycian salamander, Lyciasalamandra fazilae. North-West Journal of Zoology, 5, 321–329.

    Google Scholar 

  • Veith, M., & Steinfartz, S. (2004). When non-monophyly results in taxonomic consequences - the case of Mertensiella within the Salamandridae (Amphibia, Urodela). Salamandra, 40, 67–80.

    Google Scholar 

  • Veith, M., Baran, I., Godmann, O., Kiefer, A., Öz, M., & Tunc, M. R. (2001). A revision of population designation and geographic distribution of Mertensiella luschani (Steindachner, 1891). Fauna in the Middle East, 22, 67–82.

    Google Scholar 

  • Veith, M., Lipscher, E., Öz, M., Kiefer, A., Baran, I., Polymeni, R. M., et al. (2008). Cracking the nut, geographical adjacency of sister taxa supports vicariance in a polytomic salamander clade in the absence of node support. Molecular Phylogenetics & Evolution, 47, 916–931.

    Article  CAS  Google Scholar 

  • Wake, D. B., & Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A review from the world of amphibians. Proceedings of the National Academy of Science USA, 105, 11466–11473.

    Article  CAS  Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism. Quantitative approaches to niche evolution. Evolution, 62, 2868–2883.

    Article  PubMed  Google Scholar 

  • Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611.

    Article  Google Scholar 

  • Weinsheimer, F., Mengistu, A. A., & Rödder, D. (2010). Potential distribution of threatened Leptopelis spp. (Anura, Arthroleptidae) in Ethiopia derived from climate and land-cover data. Endangered Species Research, 9, 117–124.

    Article  Google Scholar 

  • Weisrock, D. W., Macey, J. R., Ugurtas, I. H., Larson, A., & Papenfuss, T. J. (2001). Molecular phylogenetics and historical biogeography among salamandrids of the "true" salamander clade, rapid branching of numerous highly divergent lineages in Mertensiella luschani associated with the rise of Anatolia. Molecular Phylogenetics and Evolution, 18, 434–448.

    Article  PubMed  CAS  Google Scholar 

  • Wiens, J. J. (2004). Speciation and ecology revisited, phylogenetic niche conservatism and the origin of species. Evolution, 58, 193–197.

    PubMed  Google Scholar 

  • Wiens, J. J., & Graham, C. H. (2005). Niche conservatism, integrating evolution, ecology, and conservation biology. Annual Review of Ecology and Systematics, 36, 519–539.

    Article  Google Scholar 

  • Wilson, R. C. L., Drury, S. A., & Chapman, J. L. (1999). The Great Ice Age. London: The Open University.

    Google Scholar 

  • Wisz, M. S., Hijmans, R. J., Peterson, A. T., Graham, C. H., Guisan, A., & NPSDW Group. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773.

    Article  Google Scholar 

  • Zhang, P., Papenfuss, T. J., Wake, M. H., Qu, L., & Wake, D. B. (2008). Phylogeny and biogeography of the family Salamandridae (Amphibia, Caudata) inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 49, 586–597.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dan Warren, who helped us with statistics and provided us with the Perl script referred to in Warren et al. (2008). The manuscript benefitted from the valuable comments of G. Francesco Ficetola and Jan O. Engler. Part of our work was funded by the 'Forschungsinitiative' of the Ministry of Education, Science, Youth and Culture of the Rhineland-Palatinate state of Germany 'Die Folgen des Global Change für Bioressourcen, Gesetzgebung und Standardsetzung'. Thanks to Jerome Speybroeck for providing unpublished distribution records and Ursula Bott for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Rödder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rödder, D., Lötters, S., Öz, M. et al. A novel method to calculate climatic niche similarity among species with restricted ranges—the case of terrestrial Lycian salamanders. Org Divers Evol 11, 409–423 (2011). https://doi.org/10.1007/s13127-011-0058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-011-0058-y

Keywords

Navigation