Skip to main content

Advertisement

Log in

Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Decline in oxygen availability experienced under hypobaric hypoxia (HH) mediates imbalance in lung fluid clearance and is a causative agent of acute lung injury. Here, we investigate the pathological events behind acute HH mediated lung injury and assess the therapeutic efficacy of nanocurcumin in its amelioration. We assess the protective efficacy of nanotized curcumin (nanocurcumin) in ameliorating HH induced lung injury and compare to curcumin. Rats exposed to acute HH (6, 12, 24, 48 and 72 h) were subjected to histopathology, blood-gas analysis and clinical biochemistry, cytokine response and redox damage. HH induced lung injury was analysed using markers of lung injury due to pulmonary vasoconstriction (ET-1/2/3 and endothelin receptors A and B) and trans-vascular fluid balance mediator (Na+/K+ ATPase). The protective efficacy of nanocurcumin was analysed by examination of Akt/Erk signalling cascade by western blot. HH induced lung injury was associated with discrete changes in blood analytes, differential circulatory cytokine response and severe pulmonary redox damages. Up-regulation of ET-1/2/3 and its receptors along with down-regulation of Na+/K+ ATPase confirmed defective pulmonary fluid clearance which promoted edema formation. Nanocurcumin treatment prevented lung edema formation and restored expression levels of ET-1/2/3 and its receptors while restoring the blood analytes, circulatory cytokines and pulmonary redox status better than curcumin. Modulation in Akt/Erk signalling pathway in rat lungs under HH confirmed the protective efficacy of nanocurcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP (2013) Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ 346:f1378

    Article  PubMed  PubMed Central  Google Scholar 

  2. Akhtar F, Rizvi MMA, Kar SK (2012) Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv 30:310–320. doi:10.1016/j.biotechadv.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  3. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818. doi:10.1021/mp700113r

    Article  CAS  PubMed  Google Scholar 

  4. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB (2008) Biological activities of curcumin and its analogues (congeners) made by man and mother nature. Biochem Pharmacol 76:1590–1611. doi:10.1016/j.bcp.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  5. Araneda OF, Tuesta M (2012) Lung oxidative damage by hypoxia. Oxidative Med Cell Longev 2012:1–18. doi:10.1155/2012/856918

    Article  CAS  Google Scholar 

  6. Azzam ZS, Dumasius V, Saldias FJ, Adir Y, Sznajder JI, Factor P (2002) Na,K-ATPase overexpression improves alveolar fluid clearance in a rat model of elevated left atrial pressure. Circulation 105:497–501. doi:10.1161/hc0402.102848

    Article  CAS  PubMed  Google Scholar 

  7. Bärtsch P, Swenson ER (2013) Clinical practice: acute high-altitude illnesses. N Engl J Med 368:2294–2302. doi:10.1056/NEJMcp1214870

    Article  CAS  PubMed  Google Scholar 

  8. Berg JT (2004) Ginkgo biloba Extract prevents high altitude pulmonary edema in rats. High Alt Med Biol 5:429–434. doi:10.1089/ham.2004.5.429

    Article  PubMed  Google Scholar 

  9. Burtscher M, Pachinger O, Ehrenbourg I, Mitterbauer G, Faulhaber M, Pühringer R, Tkatchouk E (2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol 96:247–254. doi:10.1016/j.ijcard.2003.07.021

    Article  PubMed  Google Scholar 

  10. Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116. doi:10.1016/0003-2697(83)90270-1

    Article  CAS  PubMed  Google Scholar 

  11. Chang M-Y, Parker E, El Nahas M, Haylor JL, Ong ACM (2007) Endothelin B receptor blockade accelerates disease progression in a murine model of autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:560–569. doi:10.1681/ASN.2006090994

    Article  CAS  PubMed  Google Scholar 

  12. Crosbie PAJ, Crosbie EJ, Dea MA, Walker M, Harrison R, Pernemalm M, Shah R, Joseph L, Booton R, Pierce A, Whetton AD (2016) ERK and AKT phosphorylation status in lung cancer and emphysema using nanocapillary isoelectric focusing. BMJ Open Respir Res. doi:10.1136/bmjresp-2015-000114

    Google Scholar 

  13. Dumitrascu R, Weissmann N, Ghofrani HA, Dony E, Beuerlein K, Schmidt H, Stasch J, Gnoth MJ, Seeger W, Schermuly RT, Dumitrascu R, Weissmann N, Ghofrani HA (2006) Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling. Circulation. doi:10.1161/CIRCULATIONAHA.105.581405

    PubMed  Google Scholar 

  14. Dumitrascu R, Weissmann N, Ghofrani HA, Dony E, Beuerlein K, Schmidt H, Stasch J-P, Gnoth MJ, Seeger W, Grimminger F, Schermuly RT (2006) Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling. Circulation 113:286–295. doi:10.1161/CIRCULATIONAHA.105.581405

    Article  CAS  PubMed  Google Scholar 

  15. Fagan KA, Mcmurtry IF, Rodman DM (2001) Role of endothelin-1 in lung disease. Respir Res 2:90–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Flora G, Gupta D, Tiwari A (2013) Nanocurcumin: a promising therapeutic advancement over native curcumin. Crit Rev Ther Drug Carrier Syst 30:331–368. doi:10.1615/CritRevTherDrugCarrierSyst.2013007236

    Article  CAS  PubMed  Google Scholar 

  17. Fraccarollo D, Hu K, Galuppo P, Gaudron P, Ertl G (1997) Chronic endothelin receptor blockade attenuates progressive ventricular dilation and improves cardiac function in rats with myocardial infarction: possible involvement of myocardial endothelin system in ventricular remodeling. Circulation 96:3963–3973. doi:10.1161/01.CIR.96.11.3963

    Article  CAS  PubMed  Google Scholar 

  18. Giordano FJ (2005) Oxygen , oxidative stress , hypoxia , and heart failure. J clinincal Investig 115:500–5008. doi:10.1172/JCI200524408.500

    Article  CAS  Google Scholar 

  19. Goerre S, Wenk M, Bärtsch P, Lüscher TF, Niroomand F, Hohenhaus E, Oelz O, Reinhart WH (1995) Endothelin-1 in pulmonary hypertension associated with high-altitude exposure. Circulation. doi:10.1161/01.CIR.91.2.359

    PubMed  Google Scholar 

  20. Gonçalves-De-Albuquerque CF, Silva AR, Burth P, De Moraes IMM, Oliveira FMDJ, Younes-Ibrahim M, Dos Santos MDCB, D’Ávila H, Bozza PT, Faria Neto HCDC, De Castro Faria MV (2012) Oleic acid induces lung injury in mice through activation of the ERK pathway. Mediat Inflamm. doi:10.1155/2012/956509

    Google Scholar 

  21. Gutteridge JMC (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  PubMed  Google Scholar 

  22. Hackett PH, Roach RC, Hartig GS, Greene ER, Levine BD (1992) The effect of vasodilators on pulmonary hemodynamics in high altitude pulmonary edema: a comparison. Int J Sports Med 13(Suppl 1):S68–S71. doi:10.1055/s-2007-1024599

    Article  PubMed  Google Scholar 

  23. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. doi:10.1016/0003-2697(76)90326-2

    Article  CAS  PubMed  Google Scholar 

  24. Hultgren HN (1996) High-altitude pulmonary edema: current concepts. Annu Rev Med 47:267–284. doi:10.1146/annurev.med.47.1.267

    Article  CAS  PubMed  Google Scholar 

  25. Ivy D, McMurtry IF, Yanagisawa M, Gariepy CE, Le Cras TD, Gebb SA, Morris KG, Wiseman RC, Abman SH (2001) Endothelin B receptor deficiency potentiates ET-1 and hypoxic pulmonary vasoconstriction. Am J Physiol Lung Cell Mol Physiol 280:L1040–L1048

    CAS  PubMed  Google Scholar 

  26. Kaner RJ, Ladetto JV, Singh R, Fukuda N, Matthay MA, Crystal RG (2000) Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Am J Physiol Lung Cell Mol Physiol 22:657–664

    CAS  Google Scholar 

  27. Kar SK, Akhtar F, Ray G PA (2010) Curcumin nanoparticles and methods of producing the same. Pat WO 2010/01 224 A2 1–80

  28. Lee J, Li Y, Chen H, Lin R, Huang S, Chen H, Kuan P, Liao M, Chen C, Kuan Y (2010) Protective effects of luteolin against lipopolysaccharide-induced acute lung injury involves inhibition of MEK/ERK and PI3K/Akt pathways in neutrophils. Acta Pharmacol Sin 31:831–838. doi:10.1038/aps.2010.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee SY, Li MH, Shi LS, Chu H, Ho CW, Chang TC (2013) Rhodiola crenulata extract alleviates hypoxic pulmonary edema in rats. Evidence-based Complement Altern Med 2013:1–9. doi:10.1155/2013/718739

    Google Scholar 

  30. LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. doi:10.1007/s10982-008-9035-9

    CAS  PubMed  Google Scholar 

  31. Maggiorini M, Leon-Velarde F (2003) High-altitude pulmonary hypertension: a pathophysiological entity to different diseases. Eur Respir J 22:1019–1025. doi:10.1183/09031936.03.00052403

    Article  CAS  PubMed  Google Scholar 

  32. Markou T, Chambers DJ (2014) Lung injury after simulated cardiopulmonary bypass in an isolated perfused rat lung preparation: role of mitogen-activated protein kinase/Akt signaling and the effects of theophylline. J Thorac Cardiovasc Surg 148:2335–2344. doi:10.1016/j.jtcvs.2014.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Modesti PA, Vanni S, Morabito M, Modesti A, Gamberi T, Sofi F, Savia G, Mancia G, Franco G (2006) Role of endothelin-1 in exposure to high altitude. Circulation 114:1410–1416. doi:10.1161/CIRCULATIONAHA.105.605527

    Article  CAS  PubMed  Google Scholar 

  34. Modesti PA, Vanni S, Morabito M, Modesti A, Marchetta M, Gamberi T, Sofi F, Savia G, Mancia G, Gensini GF, Parati G (2006) Role of endothelin-1 in exposure to high altitude: acute mountain sickness and endothelin-1 (ACME-1) study. Circulation 114:1410–1416. doi:10.1161/CIRCULATIONAHA.105.605527

    Article  CAS  PubMed  Google Scholar 

  35. Nakanishi K, Tajima F, Nakata Y, Osada H, Tachibana S, Kawai T, Torikata C, Suga T, Takishima K, Aurues T, Ikeda T (1999) Expression of endothelin-1 in rats developing hypobaric hypoxia-induced pulmonary hypertension. Lab Investig 79:1347–1357

    CAS  PubMed  Google Scholar 

  36. Nehra S, Bhardwaj V, Ganju L, Saraswat D (2015) Nanocurcumin prevents hypoxia induced stress in primary human ventricular cardiomyocytes by maintaining mitochondrial homeostasis. PLoS One 10:e0139121. doi:10.1371/journal.pone.0139121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nehra S, Bhardwaj V, Kalra N, Ganju L, Bansal A, Saxena S, Saraswat D (2015) Nanocurcumin protects cardiomyoblasts H9c2 from hypoxia-induced hypertrophy and apoptosis by improving oxidative balance. J Physiol Biochem 71:239–251. doi:10.1007/s13105-015-0405-0

    Article  CAS  PubMed  Google Scholar 

  38. Nehra S, Bhardwaj V, Saraswat D (2014) Amlodipine protects rat ventricular cardiomyoblast H9c2 from hypoxia-induced apoptosis and restores oxidative balance by Akt-1–dependent manner. J Cardiovasc Pharmacol 64:375–384

    Article  CAS  PubMed  Google Scholar 

  39. Oelz O, Maggiorini M, Ritter M, Noti C, Waber U, Vock P, Bärtsch P (1992) Prevention and treatment of high altitude pulmonary edema by a calcium channel blocker. Int J Sports Med. doi:10.1055/s-2007-1024598

    PubMed  Google Scholar 

  40. Physiol AJ, Cell L, Physiol M, Ali MH, Schlidt SA, Chandel NS, Hynes KL, Schumacker PT, Gewertz BL, Ali MIRH, Schlidt SA, Chandel NS, Hynes KL, Schumacker PT, Gewertz BL, Mir H, Schlidt SA, Chandel NS, Hynes KL, Schumacker PT, Bruce L (2013) Endothelial permeability and IL-6 production during hypoxia : role of ROS in signal transduction endothelial permeability and IL-6 production during hypoxia : role of ROS in signal transduction

  41. Rassler B, Marx G, Reissig C, Rohling MA, Tannapfel A, Wenger RH, Zimmer H (2007) Time course of hypoxia-induced lung injury in rats. Respir Physiol Neurobiol 159:45–54. doi:10.1016/j.resp.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  42. Reddy NM, Potteti HR, Vegiraju S, Chen H-J, Tamatam CM, Reddy SP (2015) PI3K-AKT signaling via Nrf2 protects against hyperoxia-induced acute lung injury, but promotes inflammation post-injury independent of Nrf2 in mice. PLoS One 10:e0129676. doi:10.1371/journal.pone.0129676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2:131–136. doi:10.2174/1567205053585882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sartori C, Vollenweider L, Löffler BM, Delabays A, Nicod P, Bärtsch P, Scherrer U (1999) Exaggerated endothelin release in high-altitude pulmonary edema. Circulation 99:2665–2668. doi:10.1161/01.CIR.99.20.2665

    Article  CAS  PubMed  Google Scholar 

  45. Scherrer U, Rexhaj E, Jayet P, Allemann Y, Sartori C (2010) New insights in the pathogenesis of high-altitude pulmonary edema. Prog Cardiovasc Dis 52:485–492. doi:10.1016/j.pcad.2010.02.004

    Article  PubMed  Google Scholar 

  46. Semenza GL (1991) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 4:1474–1480. doi:10.2528/pier13111003

    Google Scholar 

  47. Shehzad A, Ul-Islam M, Wahid F, Lee YS (2014) Multifunctional polymeric nanocurcumin for cancer therapy. J Nanosci Nanotechnol 14:803–814

    Article  CAS  PubMed  Google Scholar 

  48. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PSSR (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356. doi:10.1055/s-2006-957450

    Article  CAS  PubMed  Google Scholar 

  49. Shukla D, Saxena S, Purushothaman J, Shrivastava K, Singh M, Shukla S, Malhotra VK, Mustoori S, Bansal A (2011) Hypoxic preconditioning with cobalt ameliorates hypobaric hypoxia induced pulmonary edema in rat. Eur J Pharmacol 656:101–109. doi:10.1016/j.ejphar.2011.01.038

    Article  CAS  PubMed  Google Scholar 

  50. Sieck GC (2002) Lung edema clearance: 20 years of progress invited review: lung edema clearance: role of Na+ -K+ -ATPase. J Appl Physiol 89:1253–1254. doi:10.1152/japplphysiol.00017.2004

    Google Scholar 

  51. Steizner TJ, O’Brien RF, Sato K, Weil JV (1988) Hypoxia-induced increases in pulmonary transvascular protein escape in rats. Modulation by glucocorticoids J Clin Invest 82:1840–1847. doi:10.1172/JCI113800

    Article  Google Scholar 

  52. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99:675–691. doi:10.1161/01.RES.0000243584.45145.3f

    Article  CAS  PubMed  Google Scholar 

  53. Stream JO, Grissom CK (2008) Update on high-altitude pulmonary edema: pathogenesis, prevention, and treatment. Wilderness Environ Med 19:293–303. doi:10.1580/07-WEME-REV-173.1

    Article  PubMed  Google Scholar 

  54. Swenson ER (2013) Hypoxic pulmonary vasoconstriction. High Alt Med Biol 14:101–110. doi:10.1089/ham.2013.1010

    Article  PubMed  Google Scholar 

  55. Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92:367–520. doi:10.1152/physrev.00041.2010

    Article  CAS  PubMed  Google Scholar 

  56. Tibayan FA, Chesnutt AN, Folkesson HG, Eandi J, Matthay MA (1997) Dobutamine increases alveolar liquid clearance in ventilated rats by beta-2 receptor stimulation. Am J Respir Crit Care Med 156:438–444. doi:10.1164/ajrccm.156.2.9609141

    Article  CAS  PubMed  Google Scholar 

  57. Tilton RG, Munsch CL, Sherwood SJ, Chen SJ, Chen YF, Wu C, Block N, Dixon RA, Brock TA (2000) Attenuation of pulmonary vascular hypertension and cardiac hypertrophy with sitaxsentan sodium, an orally active ET(a) receptor antagonist. Pulm Pharmacol Ther 13:87–97. doi:10.1006/pupt.2000.0237

    Article  CAS  PubMed  Google Scholar 

  58. Utley HG, Bernheim F, Hochstein P (1967) Effect of sulfhydryl reagents on peroxidation in microsomes. Arch Biochem Biophys 118:29–32. doi:10.1016/0003-9861(67)90273-1

    Article  CAS  Google Scholar 

  59. Wang J, Oldner A, Winskog C, Edston E, Walther SM (2006) Effects of endothelin receptor antagonism on acute lung injury induced by chlorine gas. Crit Care Med 34:1731–1737. doi:10.1097/01.CCM.0000218815.46611.63

    Article  CAS  PubMed  Google Scholar 

  60. Whayne TF (2013) Cardiovascular medicine at high altitude. Angiology. doi:10.1177/0003319713497086

    Google Scholar 

  61. Xi L, Serebrovskaya TV (2012) Intermittent hypoxia and human diseases. doi:10.1007/978-1-4471-2906-6

  62. Xu X-Q, Jing Z-C (2009) High-altitude pulmonary hypertension. Eur Respir Rev 18:13–17. doi:10.1183/09059180.00011104

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Director, DIPAS for providing necessary facility to carry out the research work. The authors also thank Mr. Bhagwat Singh (Experimental Animal Facility, DIPAS) for providing necessary help in carrying out animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Saraswat.

Ethics declarations

Competing interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nehra, S., Bhardwaj, V., Bansal, A. et al. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats. J Physiol Biochem 72, 763–779 (2016). https://doi.org/10.1007/s13105-016-0515-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-016-0515-3

Keywords

Navigation