Skip to main content
Log in

Decreased global DNA methylation in the white blood cells of high fat diet fed vervet monkeys (Chlorocebus aethiops)

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Epigenetic mechanisms are associated with the development of many chronic diseases and due to their reversible nature offer a unique window of opportunity to reverse the disease phenotype. This study investigated whether global DNA methylation correlates with dysglycemia in the vervet monkey (Chlorocebus aethiops). Diet-induced changes in DNA methylation were observed where global DNA methylation was twofold lower in monkeys fed a high fat diet (n = 10) compared to monkeys fed a standard diet (n = 15). An inverse correlation was observed between DNA methylation, blood glucose concentrations, bodyweight, and age, although the association was not statistically significant. Consumption of a high fat diet is associated with the development of metabolic disease; thus, these results suggest the use of global DNA methylation as a biomarker to assess the risk for metabolic disease. Moreover, this study provides further support for the use of the vervet monkey as a model system to study metabolic diseases such as type 2 diabetes. Integration of altered DNA methylation profiles into predictive models could facilitate risk stratification and enable intervention strategies to inhibit disease progression. Such interventions could include lifestyle modifications, for example, the increased consumption of functional foods with the capacity to modulate DNA methylation, thus potentially reversing the disease phenotype and preventing disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Almen MS, Jacobsson JA, Moschonis G, Benedict C, Chrousos GP, Fredriksson R, Schioth HB (2012) Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics 99:132–137

    Article  PubMed  CAS  Google Scholar 

  2. Baccarelli A, Rienstra M, Benjamin EJ (2010) Cardiovascular epigenetics: basic concepts and results from animal and human studies. Circ Cardiovasc Genet 3:567–573

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Baccarelli A, Tarantini L, Wright RO, Bollati V, Litonjua AA, Zanobetti A, Sparrow D, Vokonas P, Schwartz J (2010) Repetitive element DNA methylation and circulating endothelial and inflammation markers in the VA normative aging study. Epigenetics 5

  4. Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, Sparrow D, Vokonas P, Schwartz J (2010) Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 21:819–828

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beigh SH, Jain S (2012) Prevalence of metabolic syndrome and gender differences. Bioinformation 8:613–616

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brons C, Jacobsen S, Nilsson E, Ronn T, Jensen CB, Storgaard H, Poulsen P, Groop L, Ling C, Astrup A, Vaag A (2010) Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin Endocrinol Metab 95:3048–3056

    Article  PubMed  Google Scholar 

  7. Caballero B (2007) The global epidemic of obesity: an overview. Epidemiol Rev 29:1–5

    Article  PubMed  Google Scholar 

  8. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, dA Tavares I (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49:1292–1296

    Article  PubMed  CAS  Google Scholar 

  9. Chaudhary N, Nakka KK, Maulik N, Chattopadhyay S (2012) Epigenetic manifestation of metabolic syndrome and dietary management. Antioxid Redox Signal 17:254–281

    Article  PubMed  CAS  Google Scholar 

  10. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602

    Article  PubMed  PubMed Central  Google Scholar 

  11. Christensen BC, Marsit CJ (2011) Epigenomics in environmental health. Front Genet 2:84

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Fincham JE, Faber M, Weight MJ, Labadarios D, Taljaard JJ, Steytler JG, Jacobs P, Kritchevsky D (1987) Diets realistic for westernized people significantly effect lipoproteins, calcium, zinc, vitamins C, E, B6 and haematology in vervet monkeys. Atherosclerosis 66:191–203

    Article  PubMed  CAS  Google Scholar 

  13. Gemma C, Sookoian S, Dieuzeide G, Garcia SI, Gianotti TF, Gonzalez CD, Pirola CJ (2010) Methylation of TFAM gene promoter in peripheral white blood cells is associated with insulin resistance in adolescents. Mol Genet Metab 100:83–87

    Article  PubMed  CAS  Google Scholar 

  14. Gilbert ER, Liu D (2012) Epigenetics: the missing link to understanding beta-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics 7:841–852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Gu T, Gu HF, Hilding A, Sjoholm LK, Ostenson CG, Ekstrom TJ, Brismar K (2013) Increased DNA methylation levels of the insulin-like growth factor binding protein 1 gene are associated with type 2 diabetes in Swedish men. Clin Epigenetics 5:21

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heyn H, Esteller M (2012) DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet 13:679–692

    Article  PubMed  CAS  Google Scholar 

  17. Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321

    Article  PubMed  CAS  Google Scholar 

  18. Jasinska AJ, Schmitt CA, Service SK, Cantor RM, Dewar K, Jentsch JD, Kaplan JR, Turner TR, Warren WC, Weinstock GM, Woods RP, Freimer NB (2013) Systems biology of the vervet monkey. ILARJ 54:122–143

    Article  CAS  Google Scholar 

  19. Jiang M, Zhang Y, Liu M, Lan MS, Fei J, Fan W, Gao X, Lu D (2011) Hypermethylation of hepatic glucokinase and L-type pyruvate kinase promoters in high-fat diet-induced obese rats. Endocrinology 152:1284–1289

    Article  PubMed  CAS  Google Scholar 

  20. Joven J, Micol V, Segura-Carretero A, Alonso-Villaverde C, Menendez JA (2014) Polyphenols and the modulation of gene expression pathways: can we eat our way out of the danger of chronic disease? Crit Rev Food Sci Nutr 54:985–1001

    Article  PubMed  CAS  Google Scholar 

  21. Kavanagh K, Fairbanks LA, Bailey JN, Jorgensen MJ, Wilson M, Zhang L, Rudel LL, Wagner JD (2007) Characterization and heritability of obesity and associated risk factors in vervet monkeys. Obesity (Silver Spring) 15:1666–1674

    Article  CAS  Google Scholar 

  22. Kavanagh K, Jones KL, Sawyer J, Kelley K, Carr JJ, Wagner JD, Rudel LL (2007) Trans fat diet induces abdominal obesity and changes in insulin sensitivity in monkeys. Obesity (Silver Spring) 15:1675–1684

    Article  CAS  Google Scholar 

  23. Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW (2010) DNA methylation as a biomarker for cardiovascular disease risk. PLoS One 5:e9692

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krishna SM, Dear A, Craig JM, Norman PE, Golledge J (2013) The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Atherosclerosis 228:295–305

    Article  PubMed  CAS  Google Scholar 

  25. Kussmann M, Morine MJ, Hager J, Sonderegger B, Kaput J (2013) Perspective: a systems approach to diabetes research. Front Genet 4:205

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luttmer R, Spijkerman AM, Kok RM, Jakobs C, Blom HJ, Serne EH, Dekker JM, Smulders YM (2013) Metabolic syndrome components are associated with DNA hypomethylation. Obes Res Clin Pract 7:e106–e115

    Article  PubMed  Google Scholar 

  27. Milagro FI, Campion J, Garcia-Diaz DF, Goyenechea E, Paternain L, Martinez JA (2009) High fat diet-induced obesity modifies the methylation pattern of leptin promoter in rats. J Physiol Biochem 65:1–9

    Article  PubMed  CAS  Google Scholar 

  28. Milagro FI, Mansego ML, De MC, Martinez JA (2012) Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives. Mol Aspects Med 34(4):782–812

    Article  PubMed  Google Scholar 

  29. Muller G (2012) Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes 5:247–282

    Article  PubMed  PubMed Central  Google Scholar 

  30. Novak M, Bjorck L, Welin L, Welin C, Manhem K, Rosengren A (2013) Gender differences in the prevalence of metabolic syndrome in 50-year-old Swedish men and women with hypertension born in 1953. J Hum Hypertens 27:56–61

    Article  PubMed  CAS  Google Scholar 

  31. Paneni F, Costantino S, Volpe M, Luscher TF, Cosentino F (2013) Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis 230:191–197

    Article  PubMed  CAS  Google Scholar 

  32. Piyathilake CJ, Badiga S, Alvarez RD, Partridge EE, Johanning GL (2013) A lower degree of PBMC L1 methylation is associated with excess body weight and higher HOMA-IR in the presence of lower concentrations of plasma folate. PLoS One 8:e54544

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Seier JV (1986) Breeding vervet monkeys in a closed environment. J Med Primatol 15:339–349

    PubMed  CAS  Google Scholar 

  34. Shen L, Waterland RA (2007) Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 10:576–581

    Article  PubMed  CAS  Google Scholar 

  35. Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A, Barciszewska MZ (2010) Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit 16:CR149–CR155

    PubMed  CAS  Google Scholar 

  36. Srivastava G, Mehta JL (2009) Currying the heart: curcumin and cardioprotection. J Cardiovasc Pharmacol Ther 14:22–27

    Article  PubMed  CAS  Google Scholar 

  37. Ulrey CL, Liu L, Andrews LG, Tollefsbol TO (2005) The impact of metabolism on DNA methylation. Hum Mol Genet 14(Spec No 1):R139–R147

    Article  PubMed  CAS  Google Scholar 

  38. Uriarte G, Paternain L, Milagro FI, Martinez JA, Campion J (2013) Shifting to a control diet after a high-fat, high-sucrose diet intake induces epigenetic changes in retroperitoneal adipocytes of Wistar rats. J Physiol Biochem 69:601–611

    Article  PubMed  CAS  Google Scholar 

  39. Venter FS, Cloete H, Seier JV, Faber M, Fincham JE (1993) Folic acid and vitamin B12 status of vervet monkeys used for nutritional research. Lab Anim 27:59–64

    Article  PubMed  CAS  Google Scholar 

  40. Wagner JE, Kavanagh K, Ward GM, Auerbach BJ, Harwood HJ Jr, Kaplan JR (2006) Old world nonhuman primate models of type 2 diabetes mellitus. ILARJ 47:259–271

    Article  CAS  Google Scholar 

  41. Wallace JM, Schwarz M, Coward P, Houze J, Sawyer JK, Kelley KL, Chai A, Rudel LL (2005) Effects of peroxisome proliferator-activated receptor alpha/delta agonists on HDL-cholesterol in vervet monkeys. J Lipid Res 46:1009–1016

    Article  PubMed  CAS  Google Scholar 

  42. Wang X, Zhu H, Snieder H, Su S, Munn D, Harshfield G, Maria BL, Dong Y, Treiber F, Gutin B, Shi H (2010) Obesity related methylation changes in DNA of peripheral blood leukocytes. BMCMed 8:87

    Google Scholar 

  43. Widiker S, Karst S, Wagener A, Brockmann GA (2010) High-fat diet leads to a decreased methylation of the Mc4r gene in the obese BFMI and the lean B6 mouse lines. J Appl Genet 51:193–197

    Article  PubMed  CAS  Google Scholar 

  44. Yang DJ, Chang YY, Hsu CL, Liu CW, Lin YL, Lin YH, Liu KC, Chen YC (2010) Antiobesity and hypolipidemic effects of polyphenol-rich longan (Dimocarpus longans Lour.) flower water extract in hypercaloric-dietary rats. J Agric. Food Chem 58:2020–2027

    Article  CAS  Google Scholar 

  45. Zhang FF, Cardarelli R, Carroll J, Fulda KG, Kaur M, Gonzalez K, Vishwanatha JK, Santella RM, Morabia A (2011) Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics 6:623–629

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Zhang FF, Morabia A, Carroll J, Gonzalez K, Fulda K, Kaur M, Vishwanatha JK, Santella RM, Cardarelli R (2011) Dietary patterns are associated with levels of global genomic DNA methylation in a cancer-free population. J Nutr 141:1165–1171

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank staff of the Diabetes Discovery Platform and the Primate unit, South African Medical Research Council for their assistance with the collection of blood. This work was funded by the South African Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pheiffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pheiffer, C., Dias, S., Muller, C. et al. Decreased global DNA methylation in the white blood cells of high fat diet fed vervet monkeys (Chlorocebus aethiops). J Physiol Biochem 70, 725–733 (2014). https://doi.org/10.1007/s13105-014-0341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0341-4

Keywords

Navigation