Skip to main content
Log in

Event-triggered consensus control for DC microgrids based on MKELM and state observer against false data injection attacks

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

Abstract

This paper proposes an event-triggered distributed control method based on state observer and multi-kernel extreme learning machine (MKELM) for direct current microgrid, which can suppress the false data injection attacks (FDIA) in system. Firstly, considering the problem that most of the methods have poor suppression capability for discrete attacks in sensor signals, an MKELM-based suppression method for sensor attack is proposed. MKELM is used to model the microgrid system, the output current estimated by MKELM is employed in the controller instead of the current value measured by sensors, thus avoiding the FDIA present in sensors. Secondly, an event-triggered state observer-based distributed secondary control method with H consensus performance is designed for suppressing the FDIA in communication link. In the controller, a state variable is constructed by deriving the microgrid system expression as a first-order multi-agent system, and then a state observer is designed to observe the transmitted information for isolating and suppressing the attack signals. And it is proved theoretically that the proposed event-triggered controller can achieve H consensus convergence. Finally, simulation analyses verify the effectiveness of the method for suppressing FDIA in DC microgrid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig.5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Tan S, Xie P, Guerrero JM et al (2022) False data injection cyber-attacks detection for multiple DC microgrid clusters. Appl Energy 310:118425

    Article  Google Scholar 

  2. Zhang Z, Dou C, Yue D et al (2022) Predictive voltage hierarchical controller design for islanded microgrids under limited communication. IEEE Trans Circuits Syst I Regul Pap 69(2):933–945

    Article  Google Scholar 

  3. Dou C, Yue D, Zhang Z, Ma K (2019) MAS-based distributed cooperative control for DC microgrid through switching topology communication network with time-varying delays. IEEE Syst J 13(1):615–624

    Article  ADS  Google Scholar 

  4. Chen Z, Yu X, Xu W et al (2021) Modeling and control of islanded DC microgrid clusters with hierarchical event-triggered consensus algorithm. IEEE Trans Circuits Syst I Regul Pap 68(1):376–386

    Article  MathSciNet  Google Scholar 

  5. Fan Y, Hu G, Egerstedt M (2017) Distributed reactive power sharing control for microgrids with event-triggered communication. IEEE Trans Control Syst Technol 25(1):118–128

    Article  Google Scholar 

  6. Li Y, Zhang Z, Dragicevic T et al (2021) A unified distributed cooperative control of DC microgrids using consensus protocol. IEEE Transact Smart Grid 12(3):1880–1892

    Article  Google Scholar 

  7. Vahidreza N, Seyedali M, Ali D et al (2015) Distributed cooperative control of DC microgrids. IEEE Trans Power Electron 30(4):2288–2303

    Article  Google Scholar 

  8. Dong X, Ge M, Liu Z et al (2022) Distributed CPS-based model predictive compensator for DC microgrids with cyber-layer constraints. Int J Electr Power Energy Syst 143:108463

    Article  Google Scholar 

  9. Habibi MR, Baghaee HR, Dragičević T et al (2021) Detection of false data injection cyber-attacks in DC microgrids based on recurrent neural networks. IEEE J Emerg Select Topics Power Electron 9(5):5294–5310

    Article  Google Scholar 

  10. Ashok A, Govindarasu M, Ajjarapu V (2018) Online detection of stealthy false data injection attacks in power system state estimation. IEEE Transact Smart Grid 9(3):1636–1646

    Google Scholar 

  11. Danzi P, Angjelichinoski M, Stefanovic C et al (2019) Software-defined microgrid control for resilience against denial-of-service attacks. IEEE Transact Smart Grid 10(5):5258–5268

  12. Pasqualetti F, Dorfler F, Bullo F (2013) Attack detection and identification in cyber-physical systems. IEEE Trans Autom Control 58(11):2715–2729

    Article  MathSciNet  Google Scholar 

  13. Liang G, Zhao J, Luo F, Weller SR, Dong ZY (2017) A review of false data injection attacks against modern power systems. IEEE Transact Smart Grid 8(4):1630–1638

    Article  Google Scholar 

  14. Zuo S, Altun T, Lewis FL et al (2020) Distributed resilient secondary control of DC microgrids against unbounded attacks. IEEE Transact Smart Grid 11(5):3850–3859

    Article  Google Scholar 

  15. Cecilia A, Dragičević T, Costa-Castelló R et al (2021) Detection and mitigation of false data in cooperative DC microgrids with unknown constant power loads. IEEE Trans Power Electron 36(8):9565–9577

    Article  ADS  Google Scholar 

  16. Lu S, Zhang Z, Zhang Y et al (2022) CGENet: A deep graph model for COVID-19 detection based on chest CT. Biology-Basel 11(1):33

    Article  CAS  Google Scholar 

  17. Lu S, Wang S, Zhang Y et al (2020) Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm. Neural Comput Appl 33(17):10799–10811

    Article  Google Scholar 

  18. Wu Y, Zhang P, Lu G (2021) Detection and location of aged cable segment in underground power distribution system using deep learning approach. IEEE Trans Industr Inf 17(11):7379–7389

    Article  Google Scholar 

  19. Habibi MR, Baghaee HR, Dragičević T, et al (2021) False data injection cyber-attacks mitigation in parallel DC/DC converters based on artificial neural networks. IEEE Transact Circuits Syst—II: Express Briefs 68(2):717–721

  20. Habibi MR, Baghaee HR, Blaabjerg F et al (2022) Secure MPC/ANN-based false data injection cyber-attack detection and mitigation in DC microgrids. IEEE Syst J 16(1):1487–1498

    Article  ADS  Google Scholar 

  21. Guo X, Zhang D, Wang J et al (2022) Event-triggered observer-based H consensus control and fault detection of multiagent systems under stochastic false data injection attacks. IEEE Transact Network Sci Eng 9(2):481–494

    Article  MathSciNet  Google Scholar 

  22. Abhinav S, Modares H, Lewis FL et al (2019) Resilient cooperative control of DC microgrids. IEEE Transact Smart Grid 10(1):1083–1085

    Article  Google Scholar 

  23. Sahoo S, Peng JCH, Devakumar A et al (2020) On detection of false data in cooperative DC microgrids—A discordant element approach. IEEE Trans Industr Electron 67(8):6562–6571

    Article  Google Scholar 

  24. Tang Z, Kuijper M, Chong MS et al (2019) Linear system security—Detection and correction of adversarial sensor attacks in the noise-free case. Automatica 101:53–59

    Article  MathSciNet  Google Scholar 

  25. Jiang Y, Yang Y, Tan S et al (2021) Distributed sliding mode observer-based secondary control for DC microgrids under cyber-attacks. IEEE J Emerg Select Topics Circuits Syst 11(1):144–154

    Article  ADS  CAS  Google Scholar 

  26. Jiang Y, Yang Y, Tan S et al (2022) A high-order differentiator based distributed secondary control for DC microgrids against false data injection attacks. IEEE Transact Smart Grid 13(5):4035–4045

    Article  Google Scholar 

  27. Nasirian V, Moayedi S, Davoudi A et al (2015) Distributed cooperative control of DC microgrids. IEEE Trans Power Electron 30(4):2288–2303

    Article  ADS  Google Scholar 

  28. Cecilia A, Sahoo S, Dragičević T et al (2022) On addressing the security and stability issues due to false data injection attacks in DC microgrids—An adaptive observer approach. IEEE Trans Power Electron 37(3):2801–2814

    Article  ADS  Google Scholar 

  29. He W, Gao X, Zhong W et al (2018) Secure impulsive synchronization control of multi-agent systems under deception attacks. Inf Sci 459(5):354–368

    Article  ADS  MathSciNet  Google Scholar 

  30. Ding D, Wang Z, Ho DWC et al (2017) Observer-based event-triggering consensus control for multiagent systems with lossy sensors and cyber-attacks. IEEE Transact Cybernet 47(8):1936–1947

    Article  Google Scholar 

  31. Liu X, Wen C, Xu Q et al (2021) Resilient control and analysis for DC microgrid system under DoS and impulsive FDI attacks. IEEE Transact Smart Grid 12(5):3742–3754

    Article  Google Scholar 

  32. Meng M, Xiao G, Li B (2020) Adaptive consensus for heterogeneous multi-agent systems under sensor and actuator attacks. Automatica 122:109242

    Article  MathSciNet  Google Scholar 

  33. Xie Z, Wu Z (2021) Maximum power point tracking algorithm of PV system based on irradiance estimation and multi-Kernel extreme learning machine. Sustain Energy Technol Assess 44:101090

    Google Scholar 

  34. Zhao XM, Cao WP, Zhu HY et al (2018) An initial study on the rank of input matrix for extreme learning machine. Int J Mach Learn Cybern 9(5):867–879

    Article  Google Scholar 

  35. Zou WD, Yao FX, Zhang BH, et al (2016) Back propagation convex extreme learning machine. 7th International Conference on Extreme Learning Machines (ELM), Singapore, DEC 13–15

  36. Cao WP, Gao JZ, Ming Z, et al (2017) Fuzziness based Random Vector Functional-link Network for Semi-supervised Learning. International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, Dec 14–16

  37. Cao WP, Yang PF, Ming Z, et al (2020) An improved fuzziness based random vector functional link network for liver disease detection. 6th IEEE Int Conf on Big Data Security on Cloud (IEEE BigDataSecurity)/6th IEEE Int Conf High Performance and Smart Computing (IEEE HPSC)/5th IEEE Int Conf on Intelligent Data and Security (IEEE IDS), Baltimore, MD, May 25–27

  38. Huang L, Mao X (2009) Delay-dependent exponential stability of neutral stochastic delay systems. IEEE Trans Autom Control 54(1):147–152

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation of Hebei Province under Grant F2020203014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix 1: The proof of Theorem 1.

Let \(e_{{\overline{d}_{i} }} = \overline{d}_{i} - \hat{\overline{d}}_{i}\). According to Eq. (22), the derivative of \(e_{{\overline{d}_{i} }}\) is

$$\dot{e}_{{\overline{d}_{i} }} = \eta_{i} \left( {\upsilon_{i} \hat{\overline{d}}_{i} - \left| {e_{Xi} } \right|} \right)$$
(36)

Consider the following Lyapunov function.

$$V_{1} = \frac{1}{2}{\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} + \frac{1}{2}\sum\limits_{i = 1}^{n} {\frac{1}{{\eta_{i} }}e_{{\overline{d}_{i} }}^{2} } ,$$
(37)

where \(e_{{\overline{d}_{i} }} = \overline{d}_{i} - \hat{\overline{d}}_{i}\).

According to Definition 1, let the mathematical expectation of the infinitesimal operator for V1 be

$$\begin{gathered} {\rm E}\left\{ {\Im V_{1} } \right\} = {\rm E}\left\{ {{\mathbf{e}}_{X}^{{\text{T}}} {\dot{\mathbf{e}}}_{X} + \sum\limits_{i = 1}^{n} {\frac{1}{{\eta_{i} }}e_{{\overline{d}_{i} }} \dot{e}_{{\overline{d}_{i} }} } } \right\} \\ = {\rm E}\left\{ { - \lambda {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{L}}^{*} {\mathbf{e}}_{X} + {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{d}} - {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{f}} + \lambda {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{\tilde{\gamma }v}} + \sum\limits_{i = 1}^{n} {\frac{1}{{\eta_{i} }}e_{{\overline{d}_{i} }} \dot{e}_{{\overline{d}_{i} }} } } \right\} \\ \end{gathered}$$
(38)

According to Eq. (29), \({\rm E}\left\{ {\lambda {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{\tilde{\gamma }v}}} \right\} = {\rm E}\left\{ {\lambda {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{\gamma v}}} \right\}\). Based on Lemma 1, let \({\mathbf{M}}_{1} = {{\varvec{\upgamma}}},{\mathbf{M}}_{2}^{ - 1} = {\mathbf{\gamma \gamma }}\), then

$$\begin{gathered} {\rm E}\left\{ {\lambda {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{\gamma v}}} \right\} \le {\rm E}\left\{ {\frac{1}{2}\lambda \beta {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} + \frac{1}{2}\lambda \beta^{ - 1} {\mathbf{v}}^{{\text{T}}} {\mathbf{\gamma \gamma v}}} \right\} \\ \le {\rm E}\left\{ {\frac{1}{2}\lambda \beta {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} } \right\} + \frac{1}{2}\lambda \beta^{ - 1} \overline{v}^{{2}} \lambda_{\max } \left( {{\mathbf{\gamma \gamma }}} \right) \\ \end{gathered}$$
(39)

Furthermore, according to Eqs. (22) and (36),

$$\begin{gathered} {\rm E}\left\{ {{\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{d}} - {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{f}} + \sum\limits_{i = 1}^{n} {\frac{1}{{\eta_{i} }}e_{{\overline{d}_{i} }} \dot{e}_{{\overline{d}_{i} }} } } \right\} \hfill \\ \le {\rm E}\left\{ {\sum\limits_{i = 1}^{n} {\left| {e_{Xi} } \right|\overline{d}_{i} } - \sum\limits_{i = 1}^{n} {e_{Xi} f_{i} } + \sum\limits_{i = 1}^{n} {\frac{1}{{\eta_{i} }}e_{{\overline{d}_{i} }} \dot{e}_{{\overline{d}_{i} }} } } \right\} \hfill \\ \le {\rm E}\left\{ {\sum\limits_{i = 1}^{n} {\left| {e_{Xi} } \right|\left( {e_{{\overline{d}_{i} }} - \hat{\overline{d}}_{i} } \right)} - \sum\limits_{i = 1}^{n} {e_{Xi} \frac{{e_{Xi} \hat{\overline{d}}_{i}^{2} }}{{\left| {e_{Xi} } \right|\left| {\hat{\overline{d}}_{i} } \right| + \upsilon_{i} }}} + \sum\limits_{i = 1}^{n} {e_{{\overline{d}_{i} }} \left( {\upsilon_{i} \hat{\overline{d}}_{i} - \left| {e_{Xi} } \right|} \right)} } \right\} \hfill \\ \le {\rm E}\left\{ { - \sum\limits_{i = 1}^{n} {\left| {e_{Xi} } \right|\hat{\overline{d}}_{i} } - \sum\limits_{i = 1}^{n} {\frac{{\left| {e_{Xi} } \right|^{2} \hat{\overline{d}}_{i}^{2} }}{{\left| {e_{Xi} } \right|\left| {\hat{\overline{d}}_{i} } \right| + \upsilon_{i} }}} + \sum\limits_{i = 1}^{n} {\upsilon_{i} e_{{\overline{d}_{i} }} \left( {\overline{d}_{i} - e_{{\overline{d}_{i} }} } \right)} } \right\}. \hfill \\ \end{gathered}$$
(40)

Since

$$e_{{\overline{d}_{i} }} \overline{d}_{i} \le \frac{1}{2}\overline{d}_{i}^{2} { + }\frac{1}{2}e_{{\overline{d}_{i} }}^{2} ,$$
(41)

then Eq. (40) can be written as

$$\begin{gathered} {\rm E}\left\{ {{\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{d}} - {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{f}} + \sum\limits_{i = 1}^{n} {\frac{1}{{\eta_{i} }}e_{{\overline{d}_{i} }} \dot{e}_{{\overline{d}_{i} }} } } \right\} \hfill \\ \le {\rm E}\left\{ {\sum\limits_{i = 1}^{n} {\left| {e_{Xi} } \right|\hat{\overline{d}}_{i} } - \sum\limits_{i = 1}^{n} {\frac{{\left| {e_{Xi} } \right|^{2} \hat{\overline{d}}_{i}^{2} }}{{\left| {e_{Xi} } \right|\left| {\hat{\overline{d}}_{i} } \right| + \upsilon_{i} }}} + \sum\limits_{i = 1}^{n} {\upsilon_{i} \left( {\frac{1}{2}\overline{d}_{i}^{2} { + }\frac{1}{2}e_{{\overline{d}_{i} }}^{2} - e_{{\overline{d}_{i} }}^{2} } \right)} } \right\} \hfill \\ \le {\rm E}\left\{ {\sum\limits_{i = 1}^{n} {\frac{{\upsilon_{i} \left| {e_{Xi} } \right|\hat{\overline{d}}_{i} }}{{\left| {e_{Xi} } \right|\left| {\hat{\overline{d}}_{i} } \right| + \upsilon_{i} }}} - \frac{1}{2}\sum\limits_{i = 1}^{n} {\upsilon_{i} e_{{\overline{d}_{i} }}^{2} } + \frac{1}{2}\sum\limits_{i = 1}^{n} {\theta_{i} \upsilon_{i} \overline{d}_{i}^{2} } } \right\} \hfill \\ \le {\rm E}\left\{ {\sum\limits_{i = 1}^{n} {\upsilon_{i} \left( {1 + \frac{1}{2}\overline{d}_{i}^{2} } \right)} - \frac{1}{2}\sum\limits_{i = 1}^{n} {\upsilon_{i} e_{{\overline{d}_{i} }}^{2} } } \right\} \hfill \\ \end{gathered}$$
(42)

Substituting Eq. (39) and Eq. (42) into Eq. (38) yields

$$\begin{gathered} {\rm E}\left\{ {\Im V_{1} } \right\} \le {\rm E}\left\{ { - \lambda {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{L}}^{*} {\mathbf{e}}_{X} + \frac{1}{2}\lambda \beta {\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} - \frac{1}{2}\sum\limits_{i = 1}^{n} {\upsilon_{i} e_{{\overline{d}_{i} }}^{2} } + \sum\limits_{i = 1}^{n} {\upsilon_{i} \left( {1 + \frac{1}{2}\overline{d}_{i}^{2} } \right)} } \right\} + \frac{1}{2}\lambda \beta^{ - 1} \overline{v}^{{2}} \lambda_{\max } \left( {{\mathbf{\gamma \gamma }}} \right) \hfill \\ \le {\rm E}\left\{ { - \lambda \left( {\lambda_{0} - \frac{1}{2}\beta } \right){\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} } \right\} + \rho \hfill \\ \le - \lambda \left( {\lambda_{0} - \frac{1}{2}\beta } \right){\rm E}\left\{ {\left\| {{\mathbf{e}}_{X} } \right\|^{2} } \right\} + \rho \hfill \\ \end{gathered}$$
(43)

where \(\rho = \sum\limits_{i = 1}^{n} {\upsilon_{i} \left( {1 + \frac{1}{2}\overline{d}_{i}^{2} } \right)} + \frac{1}{2}\lambda \beta^{ - 1} \overline{v}^{{2}} \lambda_{\max } \left( {{\mathbf{\gamma \gamma }}} \right)\). Since \(\lambda_{0} > \frac{1}{2}\beta\),

$${\rm E}\left\{ {\left\| {{\mathbf{e}}_{X} } \right\|} \right\} \le \overline{\rho }.$$
(44)

where \(\overline{\rho } = \sqrt {\frac{\rho }{{\lambda \left( {\lambda_{0} - \frac{1}{2}\beta } \right)}}}\) is the upper bound of the estimation error. Therefore, the state estimation error of the observer is finally consensus bounded and the proof is finished.

Remark 5: As shown in Eq. (44), the \(\overline{\rho }\) is affected by \(\overline{d}_{i}\), \({\mathbf{\gamma v}}\) and the parameters \(\lambda ,\beta\). Larger disturbances \(d_{i}\) and frequent FDIA attacks may lead to larger estimation errors, but \(\overline{\rho }\) can be kept arbitrarily small by choosing appropriate parameters.

Appendix 2: The proof of Theorem 2.

Let the Lyapunov function be

$$V_{2} \left( t \right) = \frac{1}{2}{{\varvec{\upvarepsilon}}}^{{\text{T}}} {{\varvec{\upvarepsilon}}} + nl{\text{e}}^{ - t}$$
(45)

According to Definition 1, let the mathematical expectation of the infinitesimal operator for V2 be

$$\begin{gathered} {\rm E}\left\{ {\Im V_{2} } \right\} = {\rm E}\left\{ {{{\varvec{\upvarepsilon}}}^{{\text{T}}} {\dot{\mathbf{\varepsilon }}} - nl{\text{e}}^{ - t} } \right\} \\ = {\rm E}\left\{ { - k{{\varvec{\upvarepsilon}}}^{{\text{T}}} {\mathbf{L}}^{*} {{\varvec{\upvarepsilon}}} + k{{\varvec{\upvarepsilon}}}^{{\text{T}}} {\mathbf{L}}^{*} {\mathbf{e}}_{X} + k{{\varvec{\upvarepsilon}}}^{{\text{T}}} {\mathbf{e}} + {{\varvec{\upvarepsilon}}}^{{\text{T}}} {\mathbf{d}} - nl{\text{e}}^{ - t} } \right\} \\ \end{gathered}$$
(46)

Since

$${\rm E}\left\{ {k{{\varvec{\upvarepsilon}}}^{{\text{T}}} {\mathbf{L}}^{*} {\mathbf{e}}_{X} } \right\} \le {\rm E}\left\{ {\frac{k}{2}\lambda_{\max } \left( {{\mathbf{L}}^{*} {\mathbf{L}}^{{*{\text{T}}}} } \right){{\varvec{\upvarepsilon}}}^{{\text{T}}} {{\varvec{\upvarepsilon}}} + \frac{k}{2}{\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} } \right\},$$
(47)
$${\rm E}\left\{ {k{{\varvec{\upvarepsilon}}}^{{\text{T}}} {\mathbf{e}}} \right\} \le {\rm E}\left\{ {\frac{k}{2}{{\varvec{\upvarepsilon}}}^{{\text{T}}} {{\varvec{\upvarepsilon}}} + \frac{k}{2}{\mathbf{e}}^{{\text{T}}} {\mathbf{e}}} \right\},$$
(48)
$${\rm E}\left\{ {{{\varvec{\upvarepsilon}}}^{{\text{T}}} {\mathbf{d}}} \right\} \le {\rm E}\left\{ {\frac{1}{{2\sigma^{2} }}{{\varvec{\upvarepsilon}}}^{{\text{T}}} {{\varvec{\upvarepsilon}}} + \frac{{\sigma^{2} }}{2}{\mathbf{d}}^{{\text{T}}} {\mathbf{d}}} \right\},$$
(49)

where \(\sigma\) is a positive number. Then Eq. (46) can be expressed as

$${\rm E}\left\{ {\Im V_{2} } \right\} \le {\rm E}\left\{ {{{\varvec{\upvarepsilon}}}^{{\text{T}}} \left[ { - k{\mathbf{L}}^{*} + \left( {\frac{k}{2}\lambda_{\max } \left( {{\mathbf{L}}^{*} {\mathbf{L}}^{{*{\text{T}}}} } \right) + \frac{k}{2} + \frac{1}{{2\sigma^{2} }}} \right)I_{n} } \right]{{\varvec{\upvarepsilon}}} + \frac{k}{2}{\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} + \frac{k}{2}{\mathbf{e}}^{{\text{T}}} {\mathbf{e}} + \frac{{\sigma^{2} }}{2}{\mathbf{d}}^{{\text{T}}} {\mathbf{d}} - nl{\text{e}}^{ - t} } \right\}.$$
(50)

Since \(\frac{k}{2}{\mathbf{e}}^{{\text{T}}} {\mathbf{e}} = \frac{k}{2}\sum\limits_{i = 1}^{n} {\left| {e_{i} } \right|^{2} }\), according to the trigger condition of Eq. (24), we can get

$$\begin{gathered} \frac{k}{2}\sum\limits_{i = 1}^{n} {\left| {e_{i} \left( t \right)} \right|^{2} } \le \frac{k}{2}\sum\limits_{i = 1}^{n} {\left( {\left| {\xi_{i} \left( t \right)} \right|^{2} + l{\text{e}}^{ - t} } \right)} \\ \le \frac{k}{2}\sum\limits_{i = 1}^{n} {\left| {\xi_{i} \left( t \right)} \right|^{2} } + \frac{kln}{2}{\text{e}}^{ - t} . \\ \end{gathered}$$
(51)

Let \(\xi_{i}^{a} = \sum\limits_{{j \in N_{i} }} {a_{ij} \left( {\hat{X}_{j} - \hat{X}_{i} } \right)}\), \(\xi_{i}^{b} = X_{{{\text{ref}}}} - \hat{X}_{i}\). Then \(u_{i} = \xi_{i}^{a} + \xi_{i}^{b}\), and Eq. (51) can be written as

$$\frac{k}{2}\sum\limits_{i = 1}^{n} {\left| {e_{i} \left( t \right)} \right|^{2} } \le k\sum\limits_{i = 1}^{n} {\left( {\left| {\xi_{i}^{a} \left( t \right)} \right|^{2} + \left| {\xi_{i}^{b} \left( t \right)} \right|^{2} } \right)} + \frac{kln}{2}{\text{e}}^{ - t} .$$
(52)

Since

$$\begin{gathered} \left| {\xi_{i}^{a} } \right| = \left| {\sum\limits_{{j \in N_{i} }} {a_{ij} \left( {\hat{X}_{j} - X_{{{\text{ref}}}} + X_{{{\text{ref}}}} - \hat{X}_{i} } \right)} } \right| \\ = \left| {\sum\limits_{{j \in N_{i} }} {a_{ij} \left( {\xi_{i}^{b} - \xi_{j}^{b} } \right)} } \right| \\ \le \sum\limits_{{j \in N_{i} }} {a_{ij} \left( {\left| {\xi_{i}^{b} } \right| + \left| {\xi_{j}^{b} } \right|} \right)} \\ \le \tilde{N}\left| {\xi_{i}^{b} } \right| + \sqrt {\tilde{N}} \left\| {\xi^{b} } \right\|, \\ \end{gathered}$$
(53)
$$\left\| {\xi^{b} } \right\|^{2} \le 2\left\| {{\varvec{\upvarepsilon}}} \right\|^{2} + 2\left\| {{\mathbf{e}}_{X} } \right\|^{2} ,$$
(54)

then

$$\begin{gathered} \sum\limits_{i = 1}^{n} {\left| {\xi_{i}^{a} \left( t \right)} \right|^{2} } \le \left( {\tilde{N} + \sqrt {n\tilde{N}} } \right)^{2} \left\| {\xi^{b} } \right\|^{2} \\ \le 2\left( {\tilde{N} + \sqrt {n\tilde{N}} } \right)^{2} \left( {\left\| {{\varvec{\upvarepsilon}}} \right\|^{2} + \left\| {{\mathbf{e}}_{X} } \right\|^{2} } \right) \\ \end{gathered}$$
(55)

So far, combining Eqs. (51)-(55), we can get

$$\begin{gathered} {\rm E}\left\{ {\Im V_{2} } \right\} \le {\rm E}\left\{ {{{\varvec{\upvarepsilon}}}^{{\text{T}}} \left[ { - k{\mathbf{L}}^{*} + \left( {\frac{k}{2}\lambda_{\max } \left( {{\mathbf{L}}^{*} {\mathbf{L}}^{{*{\text{T}}}} } \right) + \frac{k}{2} + \frac{1}{{2\sigma^{2} }} + k\left( {\tilde{N} + \sqrt {n\tilde{N}} } \right)^{2} } \right)I_{n} } \right]{{\varvec{\upvarepsilon}}}} \right. \hfill \\ \left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \left( {\frac{k}{2} + k\left( {\tilde{N} + \sqrt {n\tilde{N}} } \right)^{2} } \right){\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} + \frac{{\sigma^{2} }}{2}{\mathbf{d}}^{{\text{T}}} {\mathbf{d}}} \right\} \hfill \\ \end{gathered}$$
(56)

To achieve the dsired H consensus performance, Eq. (57) is introduced.

$$J\left( t \right) = {\rm E}\left\{ {\Im V_{2} + \frac{1}{2}{{\varvec{\upvarepsilon}}}^{{\text{T}}} {{\varvec{\upvarepsilon}}} - \frac{{\sigma^{2} }}{2}{\mathbf{\varsigma }}^{{\text{T}}} {\mathbf{\varsigma }}} \right\}$$
(57)

where \({\mathbf{\varsigma }} = \left[ {{\mathbf{e}}_{X} ,{\mathbf{d}}} \right]^{{\text{T}}}\).

Substituting Eq. (56) into Eq. (57) yields

$$\begin{gathered} J\left( t \right) \le {\rm E}\left\{ {{{\varvec{\upvarepsilon}}}^{{\text{T}}} \left[ { - k{\mathbf{L}}^{*} + \left( {\frac{k}{2}\lambda_{\max } \left( {{\mathbf{L}}^{*} {\mathbf{L}}^{{*{\text{T}}}} } \right) + \frac{k}{2} + \frac{1}{{2\sigma^{2} }} + k\left( {\tilde{N} + \sqrt {n\tilde{N}} } \right)^{2} } \right)I_{n} } \right]{{\varvec{\upvarepsilon}}}} \right. \\ \left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; + \left( {\frac{k}{2} + k\left( {\tilde{N} + \sqrt {n\tilde{N}} } \right)^{2} } \right){\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} + \frac{1}{2}{{\varvec{\upvarepsilon}}}^{{\text{T}}} {{\varvec{\upvarepsilon}}} - \frac{{\sigma^{2} }}{2}{\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} } \right\} \\ \le {\rm E}\left\{ {\left( { - k\lambda_{0} + \frac{k}{2}\lambda_{\max } \left( {{\mathbf{L}}^{*} {\mathbf{L}}^{{*{\text{T}}}} } \right) + \frac{k}{2} + \frac{1}{{2\sigma^{2} }} + k\left( {\tilde{N} + \sqrt {n\tilde{N}} } \right)^{2} + \frac{1}{2}} \right){{\varvec{\upvarepsilon}}}^{{\text{T}}} {{\varvec{\upvarepsilon}}}} \right. \\ \left. {\;\;\;\;\;\;\;\;\;\;\;\; + \left( {\frac{k}{2} + k\left( {\tilde{N} + \sqrt {n\tilde{N}} } \right)^{2} - \frac{{\sigma^{2} }}{2}} \right){\mathbf{e}}_{X}^{{\text{T}}} {\mathbf{e}}_{X} } \right\}. \\ \end{gathered}$$
(58)

According to Eqs. (34) and (35), it can be guaranteed that \(J(t) < 0\). Then Eq. (59) can be obtained by integrating \(J(t) < 0\).

$${\rm E}\left\{ {V_{2} \left( {t_{{\text{f}}} } \right) - V_{2} \left( 0 \right) + \int_{0}^{{t_{{\text{f}}} }} {\left( {\frac{1}{2}{{\varvec{\upvarepsilon}}}^{{\text{T}}} {{\varvec{\upvarepsilon}}} - \frac{{\sigma^{2} }}{2}{\mathbf{\varsigma }}^{{\text{T}}} {\mathbf{\varsigma }}} \right)} dt} \right\} < 0$$
(59)

Therefore, the proposed event-triggered controller can achieve the desired H consensus convergence performance for the system.

Next, it will be shown that the time interval between the two events is positive, i.e., the trigger condition can avoid Zeno behavior.

During \(t \in \left[ {t_{k}^{i} ,t_{k + 1}^{i} } \right)\), \(\frac{{d\left| {e_{i} \left( t \right)} \right|}}{dt} \le \left| {\dot{e}_{i} } \right|\) holds.

Since \(e_{i} = u_{i} \left( {t_{k}^{i} } \right) - u_{i} \left( t \right)\),

$$\begin{gathered} \left| {\dot{e}_{i} \left( t \right)} \right| = \left| { - \dot{u}_{i} \left( t \right)} \right| \\ = \left| {\sum\limits_{{j \in N_{i} }} {a_{ij} \left( {\dot{\hat{X}}_{i} \left( t \right) - \dot{\hat{X}}_{j} \left( t \right)} \right) + g_{i} \dot{\hat{X}}_{i} \left( t \right)} } \right|. \\ \end{gathered}$$
(60)

According to the observer in Eq. (21), let \(\theta_{i} = \sum\limits_{{j \in N_{i} }} {a_{ij} \left( {e_{Xi} - e_{Xj}^{*} } \right)} + g_{i} e_{Xi}\), then Eq. (60) can be written as

$$\begin{gathered} \left| {\dot{e}_{i} \left( t \right)} \right| = \left| {\sum\limits_{{j \in N_{i} }} {a_{ij} \left( {\left( {ku_{i} \left( {t_{k}^{i} } \right) + f_{i} + \lambda \theta_{i} } \right) - \left( {ku_{j} \left( {t_{k}^{i} } \right) + f_{j} + \lambda \theta_{j} } \right)} \right)} + g_{i} \left( {ku_{i} \left( {t_{k}^{i} } \right) + f_{i} + \lambda \theta_{i} } \right)} \right| \\ = \left| {k\left( {\sum\limits_{{j \in N_{i} }} {a_{ij} \left( {u_{i} \left( {t_{k}^{i} } \right) - u_{j} \left( {t_{k}^{i} } \right)} \right)} + gu_{i} \left( {t_{k}^{i} } \right)} \right)} \right. + \left( {\sum\limits_{{j \in N_{i} }} {a_{ij} \left( {f_{i} - f_{j} } \right) + } g_{i} f_{i} } \right) \\ \;\;\;\;\;\left. { + \lambda \left( {\sum\limits_{{j \in N_{i} }} {a_{ij} \left( {\theta_{i} - \theta_{j} } \right) + } g_{i} \theta_{i} } \right)} \right| \\ \le \tau_{k}^{i} \le \left| {e_{i} } \right| + \tau_{k}^{i} , \\ \end{gathered}$$
(61)

where

$$\begin{gathered} \tau_{k}^{i} = \mathop {\max }\limits_{{t \in \left[ {t_{k}^{i} ,t_{k + 1}^{i} } \right)}} \left\{ {\left| {k\left( {\sum\limits_{{j \in N_{i} }} {a_{ij} \left( {u_{i} \left( {t_{k}^{i} } \right) - u_{j} \left( {t_{k}^{i} } \right)} \right)} + gu_{i} \left( {t_{k}^{i} } \right)} \right) + \left( {\sum\limits_{{j \in N_{i} }} {a_{ij} \left( {f_{i} - f_{j} } \right) + } g_{i} f_{i} } \right)} \right|} \right. \hfill \\ \;\;\;\;\;\;\;\left. {\; + \lambda \left( {4\tilde{N}^{2} + 2g_{i} \tilde{N} + 2\tilde{N} + g_{i} } \right)\overline{\rho } + \lambda \left( {2\tilde{N}^{2} + g_{i} \tilde{N}} \right)\overline{v}} \right\}. \hfill \\ \end{gathered}$$
(62)

From Eq. (61), it can be further derived that

$$\left| {e_{i} \left( t \right)} \right| \le \tau_{k}^{i} \left( {{\text{e}}^{{t - t_{k}^{i} }} - 1} \right)$$
(63)

According to the trigger condition in Eq. (24),

$$\begin{gathered} \sqrt {\frac{l}{k}{\text{e}}^{ - t} } < \sqrt {\left| {e_{i} \left( t \right)} \right|^{2} - \frac{h}{k}\left| {u_{i} \left( t \right)} \right|^{2} } \\ < \left| {e_{i} \left( t \right)} \right| \\ < \tau_{k}^{i} \left( {{\text{e}}^{{t - t_{k}^{i} }} - 1} \right). \\ \end{gathered}$$
(64)

Then Eq. (65) can be further derived from Eq. (64).

$$t_{k + 1}^{i} - t_{k}^{i} > \ln \left( {\frac{1}{{\tau_{k}^{i} }}\sqrt {\frac{l}{k}{\text{e}}^{ - t} } + 1} \right) > 0$$
(65)

Therefore, this event trigger condition can avoid Zeno behavior.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Wu, Z. Event-triggered consensus control for DC microgrids based on MKELM and state observer against false data injection attacks. Int. J. Mach. Learn. & Cyber. 15, 775–793 (2024). https://doi.org/10.1007/s13042-023-01938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-023-01938-y

Keywords

Navigation