Skip to main content

Advertisement

Log in

FasL-PDPK1 Pathway Promotes the Cytotoxicity of CD8+ T Cells During Ischemic Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

CD8+ T cells are recognized as key players in exacerbation of ischemic stroke; however, the underlying mechanism in modulating the function of CD8+ T cells has not been completely elucidated. Here, we uncovered that FasL enhanced the cytotoxicity of CD8+ T cells to neurons after ischemic stroke. Inactivation of FasL specific on CD8+ T cells protected against brain damage and neuron loss. Proteomic analysis identified that PDPK1 functioned downstream of FasL signaling and inhibition of PDPK1 effectively reduced cytotoxicity of CD8+ T cells and improved ischemic neurological deficits. Taken together, these results highlight an intrinsic FasL-PDPK1 pathway regulating the cytotoxicity of CD8+ T cells in ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leventhal JS, Schröppel B. Toll-like receptors in transplantation: sensing and reacting to injury. Kidney Int. 2012;81(9):826–32.

    CAS  PubMed  Google Scholar 

  2. Llovera G, Benakis C, Enzmann G, Cai R, Arzberger T, Ghasemigharagoz A, et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol. 2017;134(6):851–68.

    CAS  PubMed  Google Scholar 

  3. Zhao H, Wan L, Chen Y, Zhang H, Xu Y, Qiu S. FasL incapacitation alleviates CD4(+) T cells-induced brain injury through remodeling of microglia polarization in mouse ischemic stroke. J Neuroimmunol. 2018;318:36–44.

    CAS  PubMed  Google Scholar 

  4. Melzer N, Meuth SG, Wiendl H. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. FASEB J. 2009;23(11):3659–73.

    CAS  PubMed  Google Scholar 

  5. Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, et al. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun. 2018;73:562–70.

    CAS  PubMed  Google Scholar 

  6. Del Val M, Schlicht HJ, Ruppert T, Reddehase MJ, Koszinowski UH. Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell. 1991;66(6):1145–53.

    PubMed  Google Scholar 

  7. Zhu J, Petit PF, Van den Eynde BJ. Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol Immunother 2018.

  8. Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30(2):180–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng H, Li W, Wang Y, Liu Z, Cai Y, Xie T, et al. Glycogen synthase kinase-3 beta regulates Snail and beta-catenin expression during Fas-induced epithelial-mesenchymal transition in gastrointestinal cancer. Eur J Cancer. 2013;49(12):2734–46.

    CAS  PubMed  Google Scholar 

  10. Choi C, Xu X, Oh JW, Lee SJ, Gillespie GY, Park H, et al. Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Cancer Res. 2001;61(7):3084–91.

    CAS  PubMed  Google Scholar 

  11. Piao X, Miura R, Miyake S, Komazawa-Sakon S, Koike M, Shindo R, et al. Blockade of TNF receptor superfamily 1 (TNFR1)-dependent and TNFR1-independent cell death is crucial for normal epidermal differentiation. J Allergy Clin Immunol. 2019;143(1):213–28.e10.

    CAS  PubMed  Google Scholar 

  12. Rex J, Lutz A, Faletti LE, Albrecht U, Thomas M, Bode JG, et al. IL-1beta and TNFalpha differentially influence NF-kappaB activity and FasL-induced apoptosis in primary murine hepatocytes during LPS-induced inflammation. Front Physiol. 2019;10:117.

    PubMed  PubMed Central  Google Scholar 

  13. Wang L, Liu S, Zhao Y, Liu D, Liu Y, Chen C, et al. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ. 2015;22(10):1654–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Trambas CM, Griffiths GM. Delivering the kiss of death. Nat Immunol. 2003;4(5):399–403.

    CAS  PubMed  Google Scholar 

  15. Akane K, Kojima S, Mak TW, Shiku H, Suzuki H. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity. Proc Natl Acad Sci U S A. 2016;113(9):2460–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong LK, Chen Y, Smith CC, Montgomery SA, Vincent BG, Dotti G, et al. CD30-redirected chimeric antigen receptor T cells target CD30(+) and CD30(-) embryonal carcinoma via antigen-dependent and Fas/FasL interactions. Cancer Immunol Res. 2018;6(10):1274–87.

    CAS  PubMed  Google Scholar 

  17. Meng H, Zhao H, Cao X, Hao J, Zhang H, Liu Y, et al. Double-negative T cells remarkably promote neuroinflammation after ischemic stroke. Proc Natl Acad Sci U S A. 2019;116(12):5558–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7(4):261–9.

    CAS  PubMed  Google Scholar 

  19. Di Blasio L, Gagliardi PA, Puliafito A, Primo L. Serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDK1) as a key regulator of cell migration and cancer dissemination. Cancers (Basel). 2017;9(3).

  20. Gagliardi PA, di Blasio L, Primo L. PDK1: a signaling hub for cell migration and tumor invasion. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2015;1856(2):178–88.

    CAS  Google Scholar 

  21. Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G, et al. Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell. 2018;71(2):201–15.e7.

    CAS  PubMed  Google Scholar 

  22. Finlay DK, Rosenzweig E, Sinclair LV, Feijoo-Carnero C, Hukelmann JL, Rolf J, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med. 2012;209(13):2441–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pozzesi N, Fierabracci A, Liberati AM, Martelli MP, Ayroldi E, Riccardi C, et al. Role of caspase-8 in thymus function. Cell Death Differ. 2014;21(2):226–33.

    CAS  PubMed  Google Scholar 

  24. Chen ZB, Huang DQ, Niu FN, Zhang X, Li EG, Xu Y. Human urinary kallidinogenase suppresses cerebral inflammation in experimental stroke and downregulates nuclear factor-kappaB. J Cereb Blood Flow Metab. 2010;30(7):1356–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, et al. The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med. 2008;205(7):1583–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.

    CAS  PubMed  Google Scholar 

  27. Zhang L, Schallert T, Zhang ZG, Jiang Q, Arniego P, Li Q, et al. A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods. 2002;117(2):207–14.

    PubMed  Google Scholar 

  28. Zhang MJ, Sun JJ, Qian L, Liu Z, Zhang Z, Cao W, et al. Human umbilical mesenchymal stem cells enhance the expression of neurotrophic factors and protect ataxic mice. Brain Res. 2011;1402:122–31.

    CAS  PubMed  Google Scholar 

  29. Alamri FF, Shoyaib AA, Biggers A, Jayaraman S, Guindon J, Karamyan VT. Applicability of the grip strength and automated von Frey tactile sensitivity tests in the mouse photothrombotic model of stroke. Behav Brain Res. 2018;336:250–5.

    PubMed  Google Scholar 

  30. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke. 1986;17(6):1304–8.

    CAS  PubMed  Google Scholar 

  31. Mombaerts P, Lacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. RAG-1-deficient mice have no mature B and T lymphocytes. Cell. 1992;68(5):869–77.

    CAS  PubMed  Google Scholar 

  32. Xu Y, Zhang B, Hua Z, Johns RA, Bredt DS, Tao YX. Targeted disruption of PSD-93 gene reduces platelet-activating factor-induced neurotoxicity in cultured cortical neurons. Exp Neurol. 2004;189(1):16–24.

    CAS  PubMed  Google Scholar 

  33. Tang X, Liu K, Hamblin MH, Xu Y, Yin KJ. Genetic Deletion of kruppel-like factor 11 aggravates ischemic brain injury. Mol Neurobiol. 2018;55(4):2911–21.

    CAS  PubMed  Google Scholar 

  34. Maegawa S, Chinen Y, Shimura Y, Tanba K, Takimoto T, Mizuno Y, et al. Phosphoinositide-dependent protein kinase 1 is a potential novel therapeutic target in mantle cell lymphoma. Exp Hematol. 2018;59:72–81 e2.

    CAS  PubMed  Google Scholar 

  35. Tracey KJ. Neurons are the inflammatory problem. Cell. 2018;173(5):1066–8.

    CAS  PubMed  Google Scholar 

  36. Xie L, Li W, Hersh J, Liu R, Yang SH. Experimental ischemic stroke induces long-term T cell activation in the brain. J Cereb Blood Flow Metab. 2018:271678X18792372.

  37. Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134(Pt 3):704–20.

    PubMed  Google Scholar 

  38. Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006;113(17):2105–12.

    PubMed  Google Scholar 

  39. Banerjee A, Wang J, Bodhankar S, Vandenbark AA, Murphy SJ, Offner H. Phenotypic changes in immune cell subsets reflect increased infarct volume in male vs. female mice. Transl Stroke Res. 2013;4(5):554–63.

    CAS  PubMed  Google Scholar 

  40. Morales-Kastresana A, Catalan E, Hervas-Stubbs S, Palazon A, Azpilikueta A, Bolanos E, et al. Essential complicity of perforin-granzyme and FAS-L mechanisms to achieve tumor rejection following treatment with anti-CD137 mAb. J Immunother Cancer. 2013;1:3.

    PubMed  PubMed Central  Google Scholar 

  41. Samidurai M, Ramasamy VS, Jo J. Beta-amyloid inhibits hippocampal LTP through TNFR/IKK/NF-kappaB pathway. Neurol Res. 2018;40(4):268–76.

    CAS  PubMed  Google Scholar 

  42. Tao J, Zhang J, Ling Y, McCall CE, Liu TF. Mitochondrial sirtuin 4 resolves immune tolerance in monocytes by rebalancing glycolysis and glucose oxidation homeostasis. Front Immunol. 2018;9:419.

    PubMed  PubMed Central  Google Scholar 

  43. Ericson K, Gan C, Cheong I, Rago C, Samuels Y, Velculescu VE, et al. Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci U S A. 2010;107(6):2598–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li D, Mullinax JE, Aiken T, Xin H, Wiegand G, Anderson A, et al. Loss of PDPK1 abrogates resistance to gemcitabine in label-retaining pancreatic cancer cells. BMC Cancer. 2018;18(1):772.

    PubMed  PubMed Central  Google Scholar 

  45. Kang JA, Choi H, Yang T, Cho SK, Park ZY, Park SG. PKCtheta-mediated PDK1 phosphorylation enhances T cell activation by increasing PDK1 stability. Mol Cell. 2017;40(1):37–44.

    CAS  Google Scholar 

  46. Maemets-Allas K, Viil J, Jaks V. A novel inhibitor of AKT1-PDPK1 interaction efficiently suppresses the activity of AKT pathway and restricts tumor growth in vivo. Mol Cancer Ther. 2015;14(11):2486–96.

    PubMed  Google Scholar 

  47. Rogel A, Willoughby JE, Buchan SL, Leonard HJ, Thirdborough SM, Al-Shamkhani A. Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance. Proc Natl Acad Sci U S A. 2017;114(7):E1178–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moon G, Kim J, Min Y, Wi SM, Shim JH, Chun E, et al. Phosphoinositide-dependent kinase-1 inhibits TRAF6 ubiquitination by interrupting the formation of TAK1-TAB2 complex in TLR4 signaling. Cell Signal. 2015;27(12):2524–33.

    CAS  PubMed  Google Scholar 

  49. Yu W, Pan Z, Zhu Y, An F, Lu Y. Fumigaclavine C exhibits anti-inflammatory effects by suppressing high mobility group box protein 1 relocation and release. Eur J Pharmacol. 2017;812:234–42.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Translational Medicine Core facilities in Medical School of Nanjing University for proteomic analysis. We thank Yan Zhang, Yue Gu, and Xinyu Bao for their technical support.

Funding

This research was supported by the National Natural Science Foundation of China (81230026, 81630028, 81701235, 81701168), the Science and Technology Department of Jiangsu Province (BE2016610), and the Jiangsu Province Key Medical Discipline (ZDXKA2016020).

Author information

Authors and Affiliations

Authors

Contributions

Yun Xu designed and coordinated the study, analyzed the data, and revised the paper. Lizhen Fan and Cunjin Zhang performed the experiments, wrote the manuscript, and revised the figures. Liwen Zhu, Jian Chen, Xiang Cao, Pinyi Liu, Zhi Zhang, and Hailan Meng helped with the experiments. Lizhen Fan and Cun-Jin Zhang contributed equally to this work.

Corresponding author

Correspondence to Yun Xu.

Ethics declarations

Conflict of Interest

All authors read and approved the final manuscript. The authors declare no conflict of interest.

Ethical Approval

This study was carried out in accordance with the recommendations of institutional guidelines and approved by the Animal Care Committee in Nanjing University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1258 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Zhang, CJ., Zhu, L. et al. FasL-PDPK1 Pathway Promotes the Cytotoxicity of CD8+ T Cells During Ischemic Stroke. Transl. Stroke Res. 11, 747–761 (2020). https://doi.org/10.1007/s12975-019-00749-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-019-00749-0

Keywords

Navigation