Skip to main content
Log in

Transcriptome Analysis Reveals Dynamic Microglial-Induced A1 Astrocyte Reactivity via C3/C3aR/NF-κB Signaling After Ischemic Stroke

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microglia and astrocytes are key players in neuroinflammation and ischemic stroke. A1 astrocytes are a subtype of astrocytes that are extremely neurotoxic and quickly kill neurons. Although the detrimental A1 astrocytes are present in many neurodegenerative diseases and are considered to accelerate neurodegeneration, their role in the pathophysiology of ischemic stroke is poorly understood. Here, we combined RNA-seq, molecular and immunological techniques, and behavioral tests to investigate the role of A1 astrocytes in the pathophysiology of ischemic stroke. We found that astrocyte phenotypes change from a beneficial A2 type in the acute phase to a detrimental A1 type in the chronic phase following ischemic stroke. The activated microglial IL1α, TNF, and C1q prompt commitment of A1 astrocytes. Inhibition of A1 astrocytes induction attenuates reactive gliosis and ameliorates morphological and functional defects following ischemic stroke. The crosstalk between astrocytic C3 and microglial C3aR contributes to the formation of A1 astrocytes and morphological and functional defects. In addition, NF-κB is activated following ischemic stroke and governs the formation of A1 astrocytes via direct targeting of inflammatory cytokines and chemokines. Taken together, we discovered that A2 astrocytes and A1 astrocytes are enriched in the acute and chronic phases of ischemic stroke respectively, and that the C3/C3aR/NF-κB signaling leads to A1 astrocytes induction. Therefore, the C3/C3aR/NF-κB signaling is a novel therapeutic target for ischemic stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data used in this study are available from the corresponding author upon reasonable request.

References

  1. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, Kamel H, Kernan WN, Kittner SJ, Leira EC, Lennon O, Meschia JF, Nguyen TN, Pollak PM, Santangeli P, Sharrief AZ, Smith SC Jr, Turan TN, Williams LS (2021) 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke 52(7):e364–e467. https://doi.org/10.1161/STR.0000000000000375

    Article  PubMed  Google Scholar 

  2. Zhao Y, Rempe DA (2010) Targeting astrocytes for stroke therapy. Neurotherapeutics 7(4):439–451. https://doi.org/10.1016/j.nurt.2010.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu Z, Chopp M (2016) Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 144:103–120. https://doi.org/10.1016/j.pneurobio.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  4. Choudhury GR, Ding S (2016) Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 85:234–244. https://doi.org/10.1016/j.nbd.2015.05.003

    Article  PubMed  Google Scholar 

  5. Adams KL, Gallo V (2018) The diversity and disparity of the glial scar. Nat Neurosci 21(1):9–15. https://doi.org/10.1038/s41593-017-0033-9

    Article  CAS  PubMed  Google Scholar 

  6. Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97. https://doi.org/10.1186/1479-5876-7-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clarke LE, Liddelow SA, Chakraborty C, Munch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115(8):E1896–E1905. https://doi.org/10.1073/pnas.1800165115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rakers C, Schleif M, Blank N, Matuskova H, Ulas T, Handler K, Torres SV, Schumacher T, Tai K, Schultze JL, Jackson WS, Petzold GC (2019) Stroke target identification guided by astrocyte transcriptome analysis. Glia 67(4):619–633. https://doi.org/10.1002/glia.23544

    Article  PubMed  Google Scholar 

  11. Dalakas MC, Alexopoulos H, Spaeth PJ (2020) Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 16(11):601–617. https://doi.org/10.1038/s41582-020-0400-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H (2016) Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J Neurosci 36(2):577–589. https://doi.org/10.1523/JNEUROSCI.2117-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen MM, Hu ZL, Ding JH, Du RH, Hu G (2021) Astrocytic Kir6.1 deletion aggravates neurodegeneration in the lipopolysaccharide-induced mouse model of Parkinson’s disease via astrocyte-neuron cross talk through complement C3–C3R signaling. Brain Behav Immun 95:310–320. https://doi.org/10.1016/j.bbi.2021.04.003

    Article  CAS  PubMed  Google Scholar 

  14. Silverman SM, Ma W, Wang X, Zhao L, Wong WT (2019) C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa. J Exp Med 216(8):1925–1943. https://doi.org/10.1084/jem.20190009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei Y, Chen T, Bosco DB, Xie M, Zheng J, Dheer A, Ying Y, Wu Q, Lennon VA, Wu LJ (2021) The complement C3–C3aR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia 69(5):1155–1169. https://doi.org/10.1002/glia.23955

    Article  CAS  PubMed  Google Scholar 

  16. Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, Lu HC, Zheng H (2015) NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85(1):101–115. https://doi.org/10.1016/j.neuron.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  17. Liddelow SA, Barres B (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  18. Zhang C, Zhu Y, Wang S, Zachory Wei Z, Jiang MQ, Zhang Y, Pan Y, Tao S, Li J, Wei L (2018) Temporal gene expression profiles after focal cerebral ischemia in mice. Aging Dis 9(2):249–261. https://doi.org/10.14336/AD.2017.0424

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562(7728):578–582. https://doi.org/10.1038/s41586-018-0543-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hanzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bouet V, Boulouard M, Toutain J, Divoux D, Bernaudin M, Schumann-Bard P, Freret T (2009) The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4(10):1560–1564. https://doi.org/10.1038/nprot.2009.125

    Article  CAS  PubMed  Google Scholar 

  25. Chen YJ, Cui Y, Singh L, Wulff H (2021) The potassium channel Kv13 as a therapeutic target for immunocytoprotection after reperfusion. Ann Clin Transl Neurol 8(10):2070–2082. https://doi.org/10.1002/acn3.51456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woodlee MT, Asseo-Garcia AM, Zhao X, Liu SJ, Jones TA, Schallert T (2005) Testing forelimb placing “across the midline” reveals distinct, lesion-dependent patterns of recovery in rats. Exp Neurol 191(2):310–317. https://doi.org/10.1016/j.expneurol.2004.09.005

    Article  PubMed  Google Scholar 

  27. Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468(7321):305–309. https://doi.org/10.1038/nature09511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ehrhardt C, Ruckle A, Hrincius ER, Haasbach E, Anhlan D, Ahmann K, Banning C, Reiling SJ, Kuhn J, Strobl S, Vitt D, Leban J, Planz O, Ludwig S (2013) The NF-kappaB inhibitor SC75741 efficiently blocks influenza virus propagation and confers a high barrier for development of viral resistance. Cell Microbiol 15(7):1198–1211. https://doi.org/10.1111/cmi.12108

    Article  CAS  PubMed  Google Scholar 

  29. Ngo KA, Kishimoto K, Davis-Turak J, Pimplaskar A, Cheng Z, Spreafico R, Chen EY, Tam A, Ghosh G, Mitchell S, Hoffmann A (2020) Dissecting the regulatory strategies of NF-kappaB RelA target genes in the inflammatory response reveals differential transactivation logics. Cell Rep 30(8):2758-2775 e2756. https://doi.org/10.1016/j.celrep.2020.01.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang JB, Zhang Z, Li JN, Yang T, Du S, Cao RJ, Cui SS (2020) SPP1 promotes Schwann cell proliferation and survival through PKCalpha by binding with CD44 and alphavbeta3 after peripheral nerve injury. Cell Biosci 10:98. https://doi.org/10.1186/s13578-020-00458-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shih YH, Chang KW, Chen MY, Yu CC, Lin DJ, Hsia SM, Huang HL, Shieh TM (2013) Lysyl oxidase and enhancement of cell proliferation and angiogenesis in oral squamous cell carcinoma. Head Neck 35(2):250–256. https://doi.org/10.1002/hed.22959

    Article  PubMed  Google Scholar 

  32. Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, Hondal RJ, Mukherjee S, Cave JW, Sagdullaev BT, Karuppagounder SS, Ratan RR (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(5):1262-1279 e1225. https://doi.org/10.1016/j.cell.2019.03.032

    Article  CAS  PubMed  Google Scholar 

  33. Lanfranco MF, Sepulveda J, Kopetsky G, Rebeck GW (2021) Expression and secretion of apoE isoforms in astrocytes and microglia during inflammation. Glia 69(6):1478–1493. https://doi.org/10.1002/glia.23974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dwir D, Giangreco B, Xin L, Tenenbaum L, Cabungcal JH, Steullet P, Goupil A, Cleusix M, Jenni R, Chtarto A, Baumann PS, Klauser P, Conus P, Tirouvanziam R, Cuenod M, Do KQ (2020) MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients. Mol Psychiatry 25(11):2889–2904. https://doi.org/10.1038/s41380-019-0393-5

    Article  PubMed  Google Scholar 

  35. Chen T, Lennon VA, Liu YU, Bosco DB, Li Y, Yi MH, Zhu J, Wei S, Wu LJ (2020) Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest 130(8):4025–4038. https://doi.org/10.1172/JCI134816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37(9):608–620. https://doi.org/10.1016/j.it.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  37. Liu T, Zhang L, Joo D, Sun SC (2017) NF-kappaB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jickling GC, Liu D, Ander BP, Stamova B, Zhan X, Sharp FR (2015) Targeting neutrophils in ischemic stroke: translational insights from experimental studies. J Cereb Blood Flow Metab 35(6):888–901. https://doi.org/10.1038/jcbfm.2015.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li S, Huang Y, Liu Y, Rocha M, Li X, Wei P, Misilimu D, Luo Y, Zhao J, Gao Y (2021) Change and predictive ability of circulating immunoregulatory lymphocytes in long-term outcomes of acute ischemic stroke. J Cereb Blood Flow Metab 41(9):2280–2294. https://doi.org/10.1177/0271678X21995694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen XY, Gao ZK, Han Y, Yuan M, Guo YS, Bi X (2021) Activation and role of astrocytes in ischemic stroke. Front Cell Neurosci 15:755955. https://doi.org/10.3389/fncel.2021.755955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kang SS, Keasey MP, Arnold SA, Reid R, Geralds J, Hagg T (2013) Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice. Neurobiol Dis 49:68–78. https://doi.org/10.1016/j.nbd.2012.08.020

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Vitery MDC, Chen J, Osei-Owusu J, Chu J, Qiu Z (2019) Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron 102(4):813-827 e816. https://doi.org/10.1016/j.neuron.2019.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cekanaviciute E, Buckwalter MS (2016) Astrocytes: integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics 13(4):685–701. https://doi.org/10.1007/s13311-016-0477-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, Wang W, Zhang S, Iwakura Y, Meng G, Fu YX, Hou B, Tang H (2018) Macrophage-derived IL-1alpha promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol 15(11):973–982. https://doi.org/10.1038/cmi.2017.22

    Article  CAS  PubMed  Google Scholar 

  45. Revel M, Sautes-Fridman C, Fridman WH, Roumenina LT (2022) C1q+ macrophages: passengers or drivers of cancer progression. Trends Cancer 8(7):517–526. https://doi.org/10.1016/j.trecan.2022.02.006

    Article  CAS  PubMed  Google Scholar 

  46. Henning L, Antony H, Breuer A, Muller J, Seifert G, Audinat E, Singh P, Brosseron F, Heneka MT, Steinhauser C, Bedner P (2023) Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 71(2):168–186. https://doi.org/10.1002/glia.24265

    Article  CAS  PubMed  Google Scholar 

  47. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. https://doi.org/10.1016/j.cell.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  48. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705. https://doi.org/10.1016/j.neuron.2012.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hammond JW, Bellizzi MJ, Ware C, Qiu WQ, Saminathan P, Li H, Luo S, Ma SA, Li Y, Gelbard HA (2020) Complement-dependent synapse loss and microgliosis in a mouse model of multiple sclerosis. Brain Behav Immun 87:739–750. https://doi.org/10.1016/j.bbi.2020.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Westacott LJ, Humby T, Haan N, Brain SA, Bush EL, Toneva M, Baloc AI, Moon AL, Reddaway J, Owen MJ, Hall J, Hughes TR, Morgan BP, Gray WP, Wilkinson LS (2022) Complement C3 and C3aR mediate different aspects of emotional behaviours; relevance to risk for psychiatric disorder. Brain Behav Immun 99:70–82. https://doi.org/10.1016/j.bbi.2021.09.005

    Article  CAS  PubMed  Google Scholar 

  51. Saini V, Guada L, Yavagal DR (2021) Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology 97(20 Suppl 2):S6–S16. https://doi.org/10.1212/WNL.0000000000012781

    Article  PubMed  Google Scholar 

  52. Ye Q, Zhai F, Chao B, Cao L, Xu Y, Zhang P, Han H, Wang L, Xu B, Chen W, Wen C, Wang S, Wang R, Zhang L, Jiao L, Liu S, Zhu YC, Wang LD (2022) Rates of intravenous thrombolysis and endovascular therapy for acute ischaemic stroke in China between 2019 and 2020. Lancet Reg Health West Pac 21:100406. https://doi.org/10.1016/j.lanwpc.2022.100406

    Article  PubMed  PubMed Central  Google Scholar 

  53. Aguiar de Sousa D, von Martial R, Abilleira S, Gattringer T, Kobayashi A, Gallofre M, Fazekas F, Szikora I, Feigin V, Caso V, Fischer U (2019) Access to and delivery of acute ischaemic stroke treatments: a survey of national scientific societies and stroke experts in 44 European countries. Eur Stroke J 4(1):13–28. https://doi.org/10.1177/2396987318786023

    Article  PubMed  Google Scholar 

  54. Man S, Solomon N, Mac Grory B, Alhanti B, Saver JL, Smith EE, Xian Y, Bhatt DL, Schwamm LH, Uchino K, Fonarow GC (2024) Trends in stroke thrombolysis care metrics and outcomes by race and ethnicity, 2003–2021. JAMA Netw Open 7(2):e2352927. https://doi.org/10.1001/jamanetworkopen.2023.52927

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Guo Y, Zhang Y, Zhao X, Fu R, Hua S, Xu S (2024) Astrocytes in ischemic stroke: crosstalk in central nervous system and therapeutic potential. Neuropathology 44(1):3–20. https://doi.org/10.1111/neup.12928

    Article  CAS  PubMed  Google Scholar 

  56. Brunkhorst R, Kanaan N, Koch A, Ferreiros N, Mirceska A, Zeiner P, Mittelbronn M, Derouiche A, Steinmetz H, Foerch C, Pfeilschifter J, Pfeilschifter W (2013) FTY720 treatment in the convalescence period improves functional recovery and reduces reactive astrogliosis in photothrombotic stroke. PLoS ONE 8(7):e70124. https://doi.org/10.1371/journal.pone.0070124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, Chao CC, Patel B, Yan R, Blain M, Alvarez JI, Kebir H, Anandasabapathy N, Izquierdo G, Jung S, Obholzer N, Pochet N, Clish CB, Prinz M, Prat A, Antel J, Quintana FJ (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22(6):586–597. https://doi.org/10.1038/nm.4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miyamoto N, Magami S, Inaba T, Ueno Y, Hira K, Kijima C, Nakajima S, Yamashiro K, Urabe T, Hattori N (2020) The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion. Glia 68(9):1910–1924. https://doi.org/10.1002/glia.23814

    Article  PubMed  Google Scholar 

  59. Propson NE, Roy ER, Litvinchuk A, Kohl J, Zheng H (2021) Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J Clin Invest 131(1):e140966. https://doi.org/10.1172/JCI140966

  60. Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, Shi FD, Hao J (2017) Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 114(3):E396–E405. https://doi.org/10.1073/pnas.1612930114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dong Zhang and Dr. Dan Tian for their technical assistance in flow cytometry. Figure 1A was drawn by Adobe Illustrator. Figure 10 was adapted from “Activated Astrocytes and Microglia Release Proinflammatory Cytokines and Induce Neurodegeneration,” by BioRender.com (2023). Retrieved from https://app.biorender.com/biorender-templates.

Funding

This work was supported by the National Natural Science Foundation of China (No. 82201622) and the Natural Science Foundation of Inner Mongolia (No. 2020MS03017).

Author information

Authors and Affiliations

Authors

Contributions

Song Wang, Dan Xie, and Yongbo Zhang designed and supervised the study. Yuhualei Pan, Yushang Zhao, Huan Wang, and Hhuixuan Ma created focal ischemic stroke mice. Song Wang performed the bioinformatics analysis, real-time PCR verifications, behavioral tests, immunofluorescent staining, and CUT&Tag. Chengjie Zhang performed RNA-seq experiments. Jinmei Sun and Song Zhang analyzed the data from behavioral tests. Yuhualei Pan and Jingyi Yao performed the flow cytometry experiments. Song Wang, Dan Xie, and Yongbo Zhang wrote and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Song Wang, Dan Xie or Yongbo Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

The animal study was evaluated and approved by the Institutional Animal Care and Use Committee (IACUC) of Beijing Friendship Hospital.

Consent for Publication

All authors have read and agreed to publish this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Pan, Y., Zhang, C. et al. Transcriptome Analysis Reveals Dynamic Microglial-Induced A1 Astrocyte Reactivity via C3/C3aR/NF-κB Signaling After Ischemic Stroke. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04210-8

Keywords

Navigation