Skip to main content
Log in

Translational Strategies for Neuroprotection in Ischemic Stroke—Focusing on Acid-Sensing Ion Channel 1a

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Ischemic stroke contributes to the majority of brain injuries and remains to be a leading cause of death and long-term disability. Despite the devastating pathology and high incidence of disease, there remain only few treatment options (TPA and endovascular procedures), which may be hampered by time-dependent administration among a variety of other factors. Promising research of glutamate receptor antagonists has been unsuccessful in clinical trial. But, the mechanism by which glutamate receptors initiate injury by excessive calcium overload has spurred investigation of new and potentially successful candidates for stroke therapy. Acid-sensing ion channels (ASICs) may contribute to poor stroke prognosis due to localized drop in brain pH, resulting in excessive calcium overload, independent of glutamate activation. Accumulating studies targeting ASICs have underscored the importance of understanding inhibition, regulation, desensitization, and trafficking of this channel and its role in disease. This review will discuss potential directions in translational ASIC research for future stroke therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akopian ANFAU, Chen CCFAU, Ding YF, Cesare PF, Wood JN. A new member of the acid-sensing ion channel family. Neuroreport. 2000;11:2217–22.

    Article  CAS  PubMed  Google Scholar 

  2. Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ. Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem. 2004;279:18296–305.

    Article  CAS  PubMed  Google Scholar 

  3. Auer RN. Progress review: hypoglycemic brain damage. Stroke. 1986;17:699–708.

    Article  CAS  PubMed  Google Scholar 

  4. Auer RN, Siesjo BK. Hypoglycaemia: brain neurochemistry and neuropathology. Baillieres Clin Endocrinol Metab. 1993;7:611–25.

    Article  CAS  PubMed  Google Scholar 

  5. Babini E, Paukert M, Geisler HS, Grunder S. Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J Biol Chem. 2002;277:41597–603.

    Article  CAS  PubMed  Google Scholar 

  6. Babinski KF, Le KTFAU, Seguela P. Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J Neurochem. 1999;72:51–7.

    Article  CAS  PubMed  Google Scholar 

  7. Baron A, Waldmann R, Lazdunski M. ASIC-like, proton-activated currents in rat hippocampal neurons. J Physiol. 2002;539:485–94.

    Article  CAS  PubMed  Google Scholar 

  8. Bassler ELFAU, Ngo-Anh, Ngo-Anh TJFAU, Geisler, Geisler HSFAU, Ruppersberg JPFAU, et al. Molecular and functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem. 2001;276:33782–7.

    Article  CAS  PubMed  Google Scholar 

  9. Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ, et al. Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci U S A. 2002;99:2338–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Capasso M, Jeng JM, Malavolta M, Mocchegiani E, Sensi SL. Zinc dyshomeostasis: a key modulator of neuronal injury. J Alzheimers Dis. 2005;8:93–108.

    CAS  PubMed  Google Scholar 

  11. Chai S, Li M, Branigan D, Xiong ZG, Simon RP. Activation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking. J Biol Chem. 2010;285:13002–11.

    Article  CAS  PubMed  Google Scholar 

  12. Chai S, Li M, Lan J, Xiong ZG, Saugstad JA, Simon RP. A kinase-anchoring protein 150 and calcineurin are involved in regulation of acid-sensing ion channels ASIC1a and ASIC2a. J Biol Chem. 2007;282:22668–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Chen CCFAU, England SFAU, Akopian, Akopian ANFAU, Wood JN. A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci U S A. 1998;95:10240–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen X, Kalbacher H, Gründer S. The tarantula toxin psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity. J Gen Physiol. 2005;126:71–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen X, Grunder S. Permeating protons contribute to tachyphylaxis of the acid-sensing ion channel (ASIC) 1a. J Physiol. 2007;579:657–70.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng YD, Al-Khory L, Zivin JA. Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx. 2004;1:36–45.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Chu XP, Papasian CJ, Wang JQ, Xiong ZG. Modulation of acid-sensing ion channels: molecular mechanisms and therapeutic potential. Int J Physiol Pathophysiol Pharmacol. 2011;3:288–309.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, et al. Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci. 2004;24:8678–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Dawson RJ, Benz J, Stohler P, Tetaz T, Joseph C, Huber S, et al. Structure of the acid-sensing ion channel 1 in complex with the gating modifier Psalmotoxin 1. Nat Commun. 2012;3:1–8.

    Article  Google Scholar 

  20. de Weille JRFAU, Bassilana, Bassilana FF, Lazdunski MF, Waldmann R. Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett. 1998;433:257–60.

    Article  PubMed  Google Scholar 

  21. Deval E, Noël J, Lay N, Alloui A, Diochot S, Friend V, et al. ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J. 2008;27:3047–55.

    Article  CAS  PubMed  Google Scholar 

  22. Donier E, Rugiero F, Okuse K, Wood JN. Annexin II light chain p11 promotes functional expression of acid-sensing ion channel ASIC1a. J Biol Chem. 2005;280:38666–72.

    Article  CAS  PubMed  Google Scholar 

  23. Dorofeeva NA, Barygin OI, Staruschenko A, Bolshakov KV, Magazanik LG. Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in hippocampal interneurons. J Neurochem. 2008;106:429–41.

    Article  CAS  PubMed  Google Scholar 

  24. Duan B, Liu DS, Huang Y, Zeng WZ, Wang X, Yu H, et al. PI3-kinase/Akt pathway-regulated membrane insertion of acid-sensing ion channel 1a underlies BDNF-induced pain hypersensitivity. J Neurosci. 2012;32:6351–63.

    Article  CAS  PubMed  Google Scholar 

  25. Duggan A, Garcia-Anoveros J, Corey DP. The PDZ domain protein PICK1 and the sodium channel BNaC1 interact and localize at mechanosensory terminals of dorsal root ganglion neurons and dendrites of central neurons. J Biol Chem. 2002;277:5203–8.

    Article  CAS  PubMed  Google Scholar 

  26. Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, et al. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med. 2012;13:1483–9.

    Article  Google Scholar 

  27. Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, et al. Coupling between NMDA Receptor and Acid-Sensing Ion Channel Contributes to Ischemic Neuronal Death. Neuron. 2005;48:635–46.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Anoveros JF, Derfler BF, Neville-Golden JF, Hyman BTFAU, Corey DP. BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels. Proc Natl Acad Sci U S A. 1997;94:1459–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Garg R, Chaudhuri A, Munschauer F, Dandona P. Hyperglycemia, insulin, and acute ischemic stroke: a mechanistic justification for a trial of insulin infusion therapy. Stroke. 2006;37:267–73.

    Article  CAS  PubMed  Google Scholar 

  30. Garty H, Edelman IS. Amiloride-sensitive trypsinization of apical sodium channels. Analysis of hormonal regulation of sodium transport in toad bladder. J Gen Physiol. 1983;81:785–803.

    Article  CAS  PubMed  Google Scholar 

  31. Gilmore RM, Stead LG. The Role of Hyperglycemia in Acute Ischemic Stroke. Neurocrit Care. 2006;5:153–8.

    Article  PubMed  Google Scholar 

  32. Gonzales EB, Kawate T, Gouaux E. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature. 2009;460:599–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Grunder SFAU, Geissler, Geissler HSFAU, EL Bassler FAU, Ruppersberg JP. A new member of acid-sensing ion channels from pituitary gland. Neuroreport. 2000;11:1607–11.

    Article  CAS  PubMed  Google Scholar 

  34. Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS (2005) Pathobiology of dynorphins in trauma and disease. Front Biosci 10:216-35. Print;%2005 Jan 1.:216-235

    Google Scholar 

  35. Hecquet C, Tan F, Marcic BM, Erdos EG. Human bradykinin B(2) receptor is activated by kallikrein and other serine proteases. Mol Pharmacol. 2000;58:828–36.

    CAS  PubMed  Google Scholar 

  36. Ishibashi KF, Marumo F. Molecular cloning of a DEG/ENaC sodium channel cDNA from human testis. Biochem Biophys Res Commun. 1998;245:589–93.

    Google Scholar 

  37. Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature. 2007;449:316–23.

    Article  CAS  PubMed  Google Scholar 

  38. Jing L, Chu XP, Jiang YQ, Collier DM, Wang B, Jiang Q, et al. N-glycosylation of acid-sensing ion channel 1a regulates its trafficking and acidosis-induced spine remodeling. J Neurosci. 2012;32:4080–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kang S, Jang JH, Price MP, Gautam M, Benson CJ, Gong H, et al. Simultaneous disruption of mouse ASIC1a, ASIC2 and ASIC3 genes enhances cutaneous mechanosensitivity. PLoS One. 2012;7:e35225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002;82:735–67.

    CAS  PubMed  Google Scholar 

  41. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science. 1996;272:1013–6.

    Article  CAS  PubMed  Google Scholar 

  42. Kuno T, Mukai H, Ito A, Chang CD, Kishima K, Saito N, et al. Distinct cellular expression of calcineurin A alpha and A beta in rat brain. J Neurochem. 1992;58:1643–51.

    Article  CAS  PubMed  Google Scholar 

  43. Kusama N, Gautam M, Harding AM, Snyder PM, Benson CJ (2012) Acid-sensing ion channels (ASICs) are differentially modulated by anions dependent upon their subunit composition. Am J Physiol Cell Physiol1-35

  44. Kusama N, Harding AM, Benson CJ. Extracellular chloride modulates the desensitization kinetics of acid-sensing ion channel 1a (ASIC1a). J Biol Chem. 2010;285:17425–31.

    Article  CAS  PubMed  Google Scholar 

  45. Larson AA, Kitto KF. Manipulations of zinc in the spinal cord, by intrathecal injection of zinc chloride, disodium-calcium-EDTA, or dipicolinic acid, alter nociceptive activity in mice. J Pharmacol Exp Ther. 1997;282:1319–25.

    CAS  PubMed  Google Scholar 

  46. Lewis SA, Alles WP. Urinary kallikrein: a physiological regulator of epithelial Na + absorption. Proc Natl Acad Sci. 1986;83:5345–8.

    Article  CAS  PubMed  Google Scholar 

  47. Li Q, Dai XQ, Shen PY, Wu Y, Long W, Chen CX, et al. Direct binding of alpha-actinin enhances TRPP3 channel activity. J Neurochem. 2007;103:2391–400.

    Article  CAS  PubMed  Google Scholar 

  48. Li T, Yang Y, Canessa CM. Impact of recovery from desensitization on acid-sensing ion channel-1a (ASIC1a) current and response to high frequency stimulation. J Biol Chem. 2012;287:40680–9.

    Article  CAS  PubMed  Google Scholar 

  49. Lingueglia EFAU, de Weille, de Weille JRFAU, Bassilana, Bassilana FF, Heurteaux CF, et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem. 1997;272:29778–83.

    Article  CAS  PubMed  Google Scholar 

  50. Liu L, Zhang R, Liu K, Zhou H, Yang X, Liu X, et al. Tissue kallikrein protects cortical neurons against in vitro ischemia-acidosis/reperfusion-induced injury through the ERK1/2 pathway. Exp Neurol. 2009;219:453–65.

    Article  CAS  PubMed  Google Scholar 

  51. Logue JS, Scott JD. Organizing signal transduction through A-kinase anchoring proteins (AKAPs). FEBS J. 2010;277:4370–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Maruoka ND, Steele DF, Au BP, Dan P, Zhang X, Moore ED, et al. alpha-actinin-2 couples to cardiac Kv1.5 channels, regulating current density and channel localization in HEK cells. FEBS Lett. 2000;473:188–94.

    Article  CAS  PubMed  Google Scholar 

  53. Munshi A, Babu S, Kaul S, Shafi G, Rajeshwar K, Alladi S, et al. Depletion of serum zinc in ischemic stroke patients. Methods Find Exp Clin Pharmacol. 2010;32:433–6.

    CAS  PubMed  Google Scholar 

  54. Otey CA, Carpen O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil Cytoskeleton. 2004;58:104–11.

    Article  CAS  PubMed  Google Scholar 

  55. Pignataro G, Simon RP, Xiong ZG. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain. 2007;130:151–8.

    Article  PubMed  Google Scholar 

  56. Pignataro G, Cuomo O, Esposito E, Sirabella R, Di RG, Annunziato L. ASIC1a contributes to neuroprotection elicited by ischemic preconditioning and postconditioning. Int J Physiol Pathophysiol Pharmacol. 2011;3:1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Poirot OF, Vukicevic MF, Boesch AF, Kellenberger S. Selective regulation of acid-sensing ion channel 1 by serine proteases. J Biol Chem. 2004;279:38448–57.

    Article  CAS  PubMed  Google Scholar 

  58. Praefcke GJ, McMahon HT. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol. 2004;5:133–47.

    Article  CAS  PubMed  Google Scholar 

  59. Prakash A, Matta BF. Hyperglycaemia and neurological injury. Curr Opin Anaesthesiol. 2008;21:565–9.

    Article  PubMed  Google Scholar 

  60. Price MP FAU, Snyder PM FAU, Welsh MJ Cloning and expression of a novel human brain Na + channel. J Biol Chem. 1996;271:7879–7882.

    Google Scholar 

  61. Rety S, Sopkova J, Renouard M, Osterloh D, Gerke V, Tabaries S, et al. The crystal structure of a complex of p11 with the annexin II N-terminal peptide. Nat Struct Biol. 1999;6:89–95.

    Article  CAS  PubMed  Google Scholar 

  62. Sadeghi A, Doyle AD, Johnson BD. Regulation of the cardiac L-type Ca2+ channel by the actin-binding proteins alpha-actinin and dystrophin. Am J Physiol Cell Physiol. 2002;282:C1502–11.

    Article  CAS  PubMed  Google Scholar 

  63. Schnizler MK, Schnizler K, Zha XM, Hall DD, Wemmie JA, Hell JW, et al. The cytoskeletal protein alpha-actinin regulates acid-sensing ion channel 1a through a C-terminal interaction. J Biol Chem. 2009;284:2697–705.

    Article  CAS  PubMed  Google Scholar 

  64. Sensi SL, Paoletti P, Koh JY, Aizenman E, Bush AI, Hershfinkel M. The neurophysiology and pathology of brain zinc. J Neurosci. 2011;31:16076–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Sherwood TW, Lee KG, Gormley MG, Askwith CC. Heteromeric Acid-Sensing Ion Channels (ASICs) Composed of ASIC2b and ASIC1a Display Novel Channel Properties and Contribute to Acidosis-Induced Neuronal Death. J Neurosci. 2011;31:9723–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Sherwood TW, Askwith CC. Endogenous arginine-phenylalanine-amide-related peptides alter steady-state desensitization of ASIC1a. J Biol Chem. 2008;283:1818–30.

    Article  CAS  PubMed  Google Scholar 

  67. Sherwood TW, Askwith CC. Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci. 2009;29:14371–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Smythe E. Regulating the clathrin-coated vesicle cycle by AP2 subunit phosphorylation. Trends Cell Biol. 2002;12:352–4.

    Article  CAS  PubMed  Google Scholar 

  69. Sorkin A, Von ZM. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol. 2009;10:609–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Su J, Tang Y, Liu L, Zhou H, Dong Q. Regulation of acid-sensing ion channel 1a function by tissue kallikrein may be through channel cleavage. Neurosci Lett. 2011;490:46–51.

    Article  CAS  PubMed  Google Scholar 

  71. Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, et al. Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res. 2000;852:268–73.

    Article  CAS  PubMed  Google Scholar 

  72. Thomson RM, Anderson DC. Aspirin and clopidogrel for prevention of ischemic stroke. Curr Neurol Neurosci Rep. 2013;13:327–0327.

    Article  PubMed  Google Scholar 

  73. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature. 1997;389:607–10.

    Article  CAS  PubMed  Google Scholar 

  74. Voilley N. Acid-sensing ion channels (ASICs): new targets for the analgesic effects of non-steroid anti-inflammatory drugs (NSAIDs). Curr Drug Targets Inflamm Allergy. 2004;3:71–9.

    Article  CAS  PubMed  Google Scholar 

  75. Voilley N, De Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21:8026–33.

    CAS  PubMed  Google Scholar 

  76. Vukicevic M, Weder G, Al B, Boesch A, Kellenberger S. Trypsin cleaves acid-sensing ion channel 1a in a domain that is critical for channel gating. J Biol Chem. 2006;281:714–22.

    Article  CAS  PubMed  Google Scholar 

  77. Waldmann RF, Champigny GF, Voilley NF, Lauritzen IF, Lazdunski M The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans.

  78. Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386:173–7.

    Article  CAS  PubMed  Google Scholar 

  79. Wang W, Ye SD, Zhou KQ, Wu LM, Huang Y. High Doses of Salicylate and Aspirin Are Inhibitory on Acid-Sensing Ion Channels and Protective Against Acidosis-Induced Neuronal Injury in the Rat Cortical Neuron. J Neurosci Res. 2011;90:267–77.

    Article  PubMed  Google Scholar 

  80. Wang H, Traub LM, Weixel KM, Hawryluk MJ, Shah N, Edinger RS, et al. Clathrin-mediated endocytosis of the epithelial sodium channel. Role of epsin. J Biol Chem. 2006;281:14129–35.

    Article  CAS  PubMed  Google Scholar 

  81. Welch EJ, Jones BW, Scott JD. Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv. 2010;10:86–97.

    Article  CAS  PubMed  Google Scholar 

  82. Wyszynski M, Kharazia V, Shanghvi R, Rao A, Beggs AH, Craig AM, et al. Differential regional expression and ultrastructural localization of alpha-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain. J Neurosci. 1998;18:1383–92.

    CAS  PubMed  Google Scholar 

  83. Xiong ZG. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels (2004). Cell. 2004;118:687–98.

    Article  CAS  PubMed  Google Scholar 

  84. Xiong ZG, Chu XP, Simon RP. Ca2+ -permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol. 2006;209:59–68.

    Article  CAS  PubMed  Google Scholar 

  85. Zeng WZ, Liu DS, Duan B, Song XL, Wang X, Wei D, et al. Molecular mechanism of constitutive endocytosis of Acid-sensing ion channel 1a and its protective function in acidosis-induced neuronal death. J Neurosci. 2013;33:7066–78.

    Article  CAS  PubMed  Google Scholar 

  86. Zeng WZ, Liu DS, Duan B, Song XL, Wang X, Wei D, et al. Molecular mechanism of constitutive endocytosis of Acid-sensing ion channel 1a and its protective function in acidosis-induced neuronal death. J Neurosci. 2013;33:7066–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work in ZGX's laboratory was partially supported by NIH R01NS066027, NIMHD S21MD000101, U54 NS083932, AHA 0840132 N, and ALZ IIRG-10-173350.

Conflict of Interest

The authors declare no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Xiong.

Additional information

Invited review for special issue: “ion transporters and glutamate receptor-independent mechanisms for ischemic and/or traumatic brain injury.” Guest editors: Dandan Sun and Kristopher Kahle, Translational Stroke Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Bryant, Z., Vann, K.T. & Xiong, ZG. Translational Strategies for Neuroprotection in Ischemic Stroke—Focusing on Acid-Sensing Ion Channel 1a. Transl. Stroke Res. 5, 59–68 (2014). https://doi.org/10.1007/s12975-013-0319-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0319-5

Keywords

Navigation