Skip to main content
Log in

Induction of transgenic hairy roots in Trigonella foenum-graceum co-cultivated with Agrobacterium rhizogenes harboring a GFP gene

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2014

Abstract

An important feature of A. rhizogenes-induced hairy roots is their unique ability for investigation of gene function and production of secondary metabolites such as diosgenin in fenugreek. In order to evaluate the transformation frequency and the efficiency of transgenic hairy root induction, leaf and stem explants from two fenugreek ecotypes, Karaj and Bushehr, were infected with three concentrations of OD600= 0.8, 1.2, and 1.6 of A. rhizogenes strain K599 harboring a GFP gene. Regardless of ecotype, the ability of stem explants for the induction of hairy roots (8.09) and the transformation frequency (81.3%) was higher compared with leaf explants with the values of 5.97 and 71.88%, respectively. The number of transgenic GFP-positive hairy roots ranged from 4.2 to 13.5 in the Karaj ecotype and 3.8 to 9.9 in Bushehr. The highest transgenic hairy root (8.76), the transformation frequency (79.76%), and the growth rate of transgenic roots (0.77 d−1) were obtained from infection with K599 at OD600= 1.2, while the lowest belonged to the bacterial concentration of OD600=1.6. Although the ecotype Bushehr had lower total roots (7.53) and transgenic hairy roots (6.08), it showed higher transformation frequency (79.56%) than Karaj (73.63%). Therefore, the results indicate the importance of genotype, type of explant and bacterial concentration in breeding for induction of transgenic hairy roots and consequently, production of secondary metabolites in fenugreek.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasoglu U, Turkoz S. 1995. Antimicrobial activities of saponin extracts from some indigenous plants of Turkey. Int. J. Pharmacol. 33: 293–296

    Article  CAS  Google Scholar 

  • Akbarian R, Hasanloo T, Khosroshahi M. 2011. Evaluation of trigonelline production in Trigonella foenum-graecum hairy root cultures of two Iranian masses. Plant Omics J. 4: 408–412

    Google Scholar 

  • Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, Lashermes P, Etienne H. 2008. Agrobacterium rhizogenes-transformed roots of Coffee (Coffea arabica): Conditions for long-term proliferation, and morphological and molecular characterization. Ann. Bot. 101: 929–940

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anitha Devi B, Kamalakkannan N, Stanely Mainzen P. 2003. Supplementation of fenugreek leaves to diabetic rats: Effect on carbohydrate metabolic enzymes in diabetic liver and kidney. Phytother. Res. 17: 1231–1233

    Article  PubMed  Google Scholar 

  • Bais HP, Sudha G, George J, Ravishankah GA. 2001. Influence of exogenous hormones on growth in secondary metabolite production in hairy root cultures of Chicorium intybus L. cv. lucknow local. In Vitro Cell. Dev. Biol. Plant 37: 293–299

    Article  CAS  Google Scholar 

  • Baranski R, Klocke E, Ryschka U. 2007. Monitoring the expression of green fluorescent protein in carrot. Acta Physiol. Plant. 29: 239–246

    Article  CAS  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK. 2005. Transgenic grasspea (Lathyrusm sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep. 24: 523–531

    Article  PubMed  CAS  Google Scholar 

  • Baron C, Domke N, Beinhofer M, Hapfelmeier S. 2001. Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains. J. Bacteriol. 183: 6852–6861

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bhatti MA, Khan MTJ, Ahmed B, Jamshaid M, Ahmad W. 1996. Antibacterial activity of Trigonella foenum-graecum seeds. Fitoterapia 67: 372–374

    Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Sci. 161: 839–851

    Article  CAS  Google Scholar 

  • Cao D, Hou W, Song S, Sun H, Cao Y, Han T. 2009. Assessment of conditions affecting Agrobacterium rhizogenesmediated transformation of soybean. Plant Cell Tiss. Org. Cult. 96: 45–52

    Article  Google Scholar 

  • Cavusoglu A, Erkel EI. 2009. Saffron (Crocus Sativus L) without removing of mother corms under greenhouse condition. Turkish J. Field Crop 14: 170–180

    Google Scholar 

  • Chabaud M, Larsonneau C, Marmouget C, Huguet T. 1996. Transformation of barrel medic (Medicago truncatula Gaertn.) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants with the MtENOD12 nodulin promoter fused to the gus reporter gene. Plant Cell Rep. 15: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Chabaud M, Carvalho-Niebel F, Barker DG. 2003. Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep. 22: 46–51

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zhang B, Xu Z. 2008. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na (+)/H (+) antiporter gene AtNHX1 in common buck wheat (Fagopyrum esculentum). Transgenic Res. 17: 121–132

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, Farrand SK, Noel GR, Widholm JM. 2000. High efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, Wildholm JM. 2002. Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus. Plant Cell Tiss. Org. Cult. 69: 259–269

    Article  CAS  Google Scholar 

  • Crane C, Wright E, Dixon RA, Wang ZY. 2006. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223: 1344–1354

    Article  PubMed  CAS  Google Scholar 

  • De Buck S, Jacobs A, Van Montagu M, Depicker A. 1998. Agrobacterium tumefaciens transformation and co-transformation frequencies of Arabidopsis thaliana root explants and tobacco protoplasts. Mol. Plant Microbe Interact. 11: 449–457

    Article  PubMed  Google Scholar 

  • Geier T, Sangwan RS. 1996. Histology and chimeral segregation reveal cell-specific differences in the competence for stem regeneration and Agrobacterium-mediated transformation in Kohleria internode explants. Plant Cell Reports 15: 386–390

    Article  PubMed  CAS  Google Scholar 

  • Ghanadi A. 2005. Iranian Herbal Pharmacopiea, Ministry of Health. Iran, pp 497–505

    Google Scholar 

  • Giri A, Dhingra V, Giri CC, Singh A, Ward OP, Narasu ML. 2001. Biotransformations using plant cells, organ cultures and enzyme systems: current trends and future prospects. Biotechnol. Adv. 19: 175–199

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122–2700

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hraska M, Rakousky S, Curn V. 2006. Green fluorescent protein as a vital marker for nondestructive detection of transformation events in transgenic plants. Plant Cell Tiss. Org. Cult. 86: 303–318

    Article  CAS  Google Scholar 

  • Jian B, Hou W, Wu C, Liu B, Liu W, Song S, Bi Y, Han T. 2009. Agrobacterium rhizogenes-mediated transformation of super root-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol. 9: 1–14

    Article  CAS  Google Scholar 

  • Karimi M, Inze D, Depicker A. 2002. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7: 193–195

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Lee YH, Kim D, Park YH, Lee JY, Hwang YS, Kim YH. 2004. Agrobacterium-mediated genetic transformation of Perilla frutescens. Plant Cell Rep. 23:386–390

    Article  PubMed  CAS  Google Scholar 

  • Leena T, Jaindra NT. 2003. Role of biotechnology in medicinal plants. Trop. J. Pharm. Res. 2: 243–253

    Google Scholar 

  • Max B. 1992. This and That: The essential pharmacology of herbs and spices. Trends Pharmacol. Sci. 13: 15–20

    Article  PubMed  CAS  Google Scholar 

  • Mazarei T, Ying Z, Houtz RL. 1998. Functional analysis of the Rubisco large subunit ÂN-methyltransferase promoter from tobacco and its regulation by light in soybean hairy roots. Plant Cell Rep. 17: 907–912

    Article  CAS  Google Scholar 

  • Merkli A, Christen P, Kapetanidis I. 1997. Production of diosgenin by hairy root cultures of Trigonella foenumgraecum L. Plant Cell Rep. 16: 632–636

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321–4326

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ozturk G, Azeri FN, Yildirim Z. 2102. Field performance of in vitro sweet potato [Ipomoea batatas L.] (Lam) plantletes derived from seed stocks. Turkish J. Field Crop 17: 1–4

    Google Scholar 

  • Petit PR, Sauvaire YD, Hillaire-Buys DM, Leconte OM, Baissac YC, Ponsin GR. Ribes GR. 1995. Steroid saponis from fenugreek seeds: extraction, purification and pharmacological investigation on feeding behavior and plasma cholesterol. Steroids 60: 674–680

    Article  PubMed  CAS  Google Scholar 

  • Petropoulos AG. 2002. Fenugreek: the genus Trigonella. Taylor and Francis, London, New York

    Book  Google Scholar 

  • Quandt HJ, Pühler A, Broer I. 1993.Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol. Plant-Microbe Interact. 6: 699–706

    Article  Google Scholar 

  • Rakosy-Tican E, Aurori CM, Dijkstra C, Thieme R, Aurori A, Davey MR. 2007. The usefulness of the gfp gene for monitoring Agrobacterium-mediated transformation of potato dihaploid and tetraploid genotypes. Plant Cell Rep. 26: 661–671

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute. 2011. Release SAS 9.3. SAS Institute Inc., Cary, NC, USA

    Google Scholar 

  • Sauvaire Y, Baissac Y, Leconte O, Petit P, Ribes G. 1996. Steroid saponins from fenugreek and some of their biological properties. Adv. Exp. Med. Biol. 405: 37–46

    Article  PubMed  CAS  Google Scholar 

  • Savka MA, Ravillion B, Noel GR, Farrand S. 1990. Induction of hairy roots on co-cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80: 503–508

    Article  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V. 2004. Agrobacterium T-DNA integration: molecules and models. Trends Genet. 20: 375–383

    Article  PubMed  CAS  Google Scholar 

  • Varshney IP, Sharma SC. 1966. Saponins and sapogenins: part XXXII. Studies on Trigonella foenum graecum Linn. seeds. J. Indian Chem. Soc. 43: 564–567

    CAS  Google Scholar 

  • Veena V. Taylor CG. 2007. Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell. Dev. Biol. Plant 43: 383–403

    Article  CAS  Google Scholar 

  • Vijayakumar MV, Bhat MK. 2008. Hypoglycemic effect of a novel dialysed fenugreek seeds extract is sustainable and is mediated, in part, by the activation of hepatic enzymes. Phytother. Res. 22: 500–505

    Article  PubMed  Google Scholar 

  • Yancheva SD, Shilzerman LA, Golubowicz S, Yabloviz Z, Perl A, Hanania U, Flaishman MA. 2006. The use of green fluorescent protein (GFP) improves Agrobacterium-mediated transformation of Spadona pear (Pyrus communis L.). Plant Cell Rep. 25: 183–189

    Article  PubMed  CAS  Google Scholar 

  • Zafar R, Garg S. 1990. Diosgenin from the root culture of Trigonella foenum-graecum L. Acta Manilana 38: 15–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Heidari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahabzadeh, Z., Heidari, B. & Hafez, R.F. Induction of transgenic hairy roots in Trigonella foenum-graceum co-cultivated with Agrobacterium rhizogenes harboring a GFP gene. J. Crop Sci. Biotechnol. 16, 263–268 (2013). https://doi.org/10.1007/s12892-013-0082-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-013-0082-x

Key words

Navigation