Skip to main content
Log in

Design of a Low Voltage TCNQ-Pd-Co@NC-Modified Electrode–Based NADH Sensor

  • Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The present work involves the design and validation of an electrochemical sensor for precise and selective sensing of nicotinamide adenine dinucleotide (NADH). The designed electrochemical sensor consists of TCNQ and Pd-Co@NC nanocomposite–modified electrodes (TCNQ-Pd-Co@NC/CPE). The designed electrode was validated by cyclic voltammetry, amperometry, and electrochemical impedance spectroscopy (EIS). The results revealed potent electrocatalytic activity towards NADH oxidation and sensing. Cyclic voltammetry revealed the superior capability of TCNQ-Pd-Co@NC-based carbon paste electrode in electron transfer than TCNQ-Co@NC/CPE and TCNQ/CPE, validating better conductivity of TCNQ-Pd-Co@NC/CPE for NADH sensing. Amperometry study provided a wide linear range of 10 to 250 µM for NADH detection with a low detection limit (LOD) of 5.17 µM and a sensitivity of 21.5 µA mM. EIS study revealed the lowest Rct value of 12.5 × 102 for TCNQ-Pd-Co@NC/CPE compared to TCNQ-Co@NC/CPE and TCNQ/CPE, demonstrating high electron transfer capability and thus sensitivity towards NADH. Besides this, the modified TCNQ-Pd-Co@NC-based carbon paste electrodes offered exceptional selectivity, reproducibility, and stability over time. Therefore, designed TCNQ-Pd-Co@NC nanocomposite–based carbon paste electrodes can be efficiently used for precise and selective NADH sensing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

Data and materials will be available on request.

References

  1. A.R. Marlinda, S. Sagadevan, N. Yusoff, A. Pandikumar, N.M. Huang, O. Akbarzadeh, M.R. Johan, J. Alloys Compd. 847, 156552 (2020)

    Article  CAS  Google Scholar 

  2. J. Li, Q. Sun, Y. Mao, Z. Bai, X. Ning, J. Zheng, J. Electroanal. Chem. 794, 1 (2017)

    Article  CAS  Google Scholar 

  3. T. Rębiś, M. Kuznowicz, A. Jędrzak, G. Milczarek, T. Jesionowski, Electrochim. Acta 386, 138384 (2021)

    Article  Google Scholar 

  4. X. Huang, I.H. El-Sayed, X. Yi, M.A. El-Sayed, J. Photochem. Photobiol. B 81, 76 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. M. Eguílaz, F. Gutierrez, J.M. González-Domínguez, M.T. Martínez, G. Rivas, Biosens. Bioelectron. 86, 308 (2016)

    Article  PubMed  Google Scholar 

  6. C.H. Chen, Y.C. Chen, M.S. Lin, Biosens. Bioelectron. 42, 379 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. L. Li, H. Lu, L. Deng, Talanta 113, 1 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. S. Chen, K. Shang, X. Gao, X. Wang, Biosens. Bioelectron. 211, 114376 (2022)

    Article  CAS  PubMed  Google Scholar 

  9. W.D. Cameron, C.V. Bui, A. Hutchinson, P. Loppnau, S. Gräslund, J.V. Rocheleau, Nat. Methods 13, 352 (2016)

    Article  PubMed  Google Scholar 

  10. J. Lu, Y. Liu, X. Liu, X. Lu, X. Liu, Ionics (Kiel) 22, 2225 (2016)

    Article  CAS  Google Scholar 

  11. P. Manusha, S. Senthilkumar, J. Mater. Sci. Mater. Electron. 33, 8576 (2022)

    Article  CAS  Google Scholar 

  12. B.K. Jena, C.R. Raj, Anal. Chem. 78, 6332 (2006)

    Article  CAS  PubMed  Google Scholar 

  13. F. Valentini, A. Salis, A. Curulli, G. Palleschi, Anal. Chem. 76, 3244 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. M. Mohammadtaheri, R. Ramanathan, V. Bansal, Catal. Today 278, 319 (2016)

    Article  CAS  Google Scholar 

  15. R. Precht, S. Stolz, E. Mankel, T. Mayer, W. Jaegermann, R. Hausbrand, Phys. Chem. Chem. Phys. 18, 3056 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Wei, X. Ren, H. Ma, X. Sun, Y. Zhang, X. Kuang, T. Yan, D. Wu, Q. Wei, Chem. Eur. J. 24, 2075 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. M. Ballesteros-Rivas, A. Ota, E. Reinheimer, A. Prosvirin, J. Valdés-Martinez, K.R. Dunbar, Angew. Chem. Int. Ed. 50, 9703 (2011)

    Article  CAS  Google Scholar 

  18. R. Ramanathan, A.E. Kandjani, S. Walia, S. Balendhran, S.K. Bhargava, K. Kalantar-Zadeh, V. Bansal, RSC Adv. 3, 17654 (2013)

    Article  CAS  ADS  Google Scholar 

  19. R.A. Heintz, H. Zhao, X. Ouyang, G. Grandinetti, J. Cowen, K.R. Dunbar, Inorg. Chem. 38, 144 (1999)

    Article  CAS  Google Scholar 

  20. M. Mahajan, S.K. Bhargava, A.P. O’Mullane, RSC Adv. 3, 4440 (2013)

    Article  CAS  ADS  Google Scholar 

  21. M. Mahajan, S.K. Bhargava, A.P. O’Mullane, Electrochim. Acta 101, 186 (2013)

    Article  CAS  Google Scholar 

  22. S.A. O’Kane, R. Clérac, H. Zhao, X. Ouyang, J.R. Galán-Mascarós, R. Heintz, K.R. Dunbar, J. Solid State Chem. 152, 159 (2000)

    Article  ADS  Google Scholar 

  23. X. Mao, X. Wang, X. Xu, L. Jiang, J. Yang, Z. Du, Q. Kong, Int. J. Electrochem. Sci. 15, 6425 (2020)

    Article  CAS  Google Scholar 

  24. H. Kuhlenbeck, S. Shaikhutdinov, H.J. Freund, Chem. Rev. 113, 3986 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. Y. Ren, Z. Ma, P.G. Bruce, Chem. Soc. Rev. 41, 4909 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. G. Maduraiveeran, R. Ramaraj, J. Nanopart. Res. 13, 4267 (2011)

    Article  CAS  ADS  Google Scholar 

  27. G. Kianpour, F. Soofivand, M. Badiei, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci. Mater. Electron. 27, 10244 (2016)

    Article  CAS  Google Scholar 

  28. Y. Zhang, Y. Cai, J. Wang, L. Niu, S. Yang, X. Liu, Z. Zheng, L. Zeng, A. Liu, Process Biochem. 111, 178 (2021)

    Article  CAS  Google Scholar 

  29. K.K. Maurya, K. Singh, M. Malviya, J. Appl. Electrochem. 53, 1 (2023)

    Article  Google Scholar 

  30. Y. Li, W. Li, C. Yang, K. Tao, Q. Ma, L. Han, Dalton Trans. 49, 10421 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. Q. Lu, H. Wu, X. Zheng, Y. Chen, A.L. Rogach, X. Han, Y. Deng, W. Hu, Adv. Sci. (2021)

  32. G. Zhang, L. Liu, Q. Zhu, X. Kong, Catal Letters 153, 1536 (2023)

    Article  CAS  Google Scholar 

  33. K. Singh, C. Singh, K.K. Maurya, M. Malviya, J. Mater. Sci. Mater. Electron. 34 (2023)

  34. S. Chen, L.L. Ling, S.F. Jiang, H. Jiang, Green Chem. 22, 5730 (2020)

    Article  CAS  Google Scholar 

  35. M. Li, C. Bao, Y. Liu, J. Meng, X. Liu, Y. Cai, D. Wuu, Y. Zong, T.P. Loh, Z. Wang, RSC Adv. 9, 16534 (2019)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. S.E. Elugoke, O.E. Fayemi, A.S. Adekunle, P.S. Ganesh, S.Y. Kim, E.E. Ebenso, J. Electroanal. Chem. 929, 117120 (2023)

    Article  CAS  Google Scholar 

  37. P.S. Ganesh, A.B. Teradale, S.Y. Kim, H.U. Ko, E.E. Ebenso, Chem. Phys. Lett. 806, 140043 (2022)

    Article  CAS  Google Scholar 

  38. X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Sens Actuators B Chem 144, 220 (2010)

    Article  CAS  ADS  Google Scholar 

  39. S. Immanuel, R. Sivasubramanian, J. Phys. Chem. Solids 161, 110471 (2022)

    Article  CAS  Google Scholar 

  40. K. Guo, K. Qian, S. Zhang, J. Kong, C. Yu, B. Liu, Talanta 85, 1174 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. S. Immanuel, R. Sivasubramanian, Mater. Chem. Phys. 249, 123015 (2020)

    Article  CAS  Google Scholar 

  42. D. Gligor, Y. Dilgin, I.C. Popescu, L. Gorton, Electrochim. Acta 54, 3124 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to CIF IIT BHU for providing a central instrumentation facility. The author is also thankful to the Head of the Department for providing other facilities.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

K.K.M. made the conception and design of the study and wrote the main manuscript. K.S. and C.S. collected the data and analyzed it. M.M. reviewed and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Manisha Malviya.

Ethics declarations

Ethical Approval

The work is not applicable to both human and/ or animal studies.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, K.K., Singh, K., Singh, C. et al. Design of a Low Voltage TCNQ-Pd-Co@NC-Modified Electrode–Based NADH Sensor. Electrocatalysis (2024). https://doi.org/10.1007/s12678-024-00865-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12678-024-00865-y

Keywords

Navigation