Skip to main content
Log in

Electrochemical and analytical applications for NADH detection at glassy carbon electrode modified with nickel nanoparticles dispersed on poly 1,5-diaminonaphthalene

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical sensor based on glassy carbon electrode (GC) modified with nickel nanoparticles (NiNPs) dispersed on poly 1,5-diaminonaphthalene (PDAN) to perform nickel nanoparticles/poly 1,5-diaminonaphthalene/GC (NiNPs/PDAN/GC)-modified electrode (ME) was used for the determination of dihydronicotinamide adenine dinucleotide (NADH) using cyclic voltammetry (CV), square wave voltammetry (SWV), and differential pulse voltammetry (DPV) techniques in basic medium. Electrochemical studies showed that NiNPs/PDAN/GC ME provides a positively synergistic effect on the electrochemical oxidation of NADH. The electrocatalytic currents obtained for the three techniques were linearly related to NADH concentrations. The obtained linear concentration calibration plots gave low detection limits (LOD) of 0.378, 0.122, and 0.02 μM for CV, SWV, and DPV techniques, respectively, while the low quantification limits (LOQ) were 1.259, 0.408, and 0.067 μM, respectively. Linear detection ranges (LDR) calculated were 300–7000, 100–1000, and 10–150 μM for the three techniques, respectively. Interference studies showed that the ME exhibits excellent selectivity toward NADH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bergel A, Souppe J, Comtat M (1989) Enzymatic amplification for spectrophotometric and electrochemical assays of NAD+ and NADH. Anal Biochem 179:382–388

    Article  CAS  Google Scholar 

  2. Katakis I, Domínguez E (1997) Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors. Microchim Acta 126:11–32

    Article  CAS  Google Scholar 

  3. Rodkey FL (1955) Oxidation-reduction potentials of the diphosphopyridine nucleotide system. J Biol Chem 213:777–786

    CAS  Google Scholar 

  4. Masuda M, Motoyama Y, Kuwahara J, Nakamura N, Ohno H (2013) A paradoxical method for NAD+/NADH accumulation on an electrode surface using a hydrophobic ionic liquid. Biosens Bioelectron 39:334–337

    Article  CAS  Google Scholar 

  5. Wang J, Angnes L, Martinez T (1992) Scanning tunneling microscopic probing of surface fouling during the oxidation of nicotinamide coenzymes. Bioelectrochem Bioenerg 29:215–221

    Article  CAS  Google Scholar 

  6. Deore BA, Freund MS (2005) Reactivity of poly(anilineboronic acid) with NAD+ and NADH. Chem Mater 17:2918–2923

    Article  CAS  Google Scholar 

  7. Ge B, Tan Y, Xie Q, Ma M, Yao S (2009) Preparation of chitosan–dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH. Sens Actuators B Chem 137:547–554

    Article  CAS  Google Scholar 

  8. Liu S, Dai G, Yuan L, Zhao Y (2012) A NADH sensor based on 1,2-naphththoquinone electropolymerized on multi-walled carbon nanotubes modified glassy carbon electrode. J Chinese Chem Soc 59:1409–1414

    Article  CAS  Google Scholar 

  9. Gorton L, Domı́nguez E (2002) Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev Mol Biotechnol 82:371–392

    Article  CAS  Google Scholar 

  10. Jena BK, Raj CR (2006) Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Anal Chem 78:6332–6339

    Article  CAS  Google Scholar 

  11. Shim JH, Kim J, Go A, Lee C, Lee Y (2013) The effect of electrochemical pretreatment on the catalytic activity of carbon-supported gold nanoparticles for NADH oxidation. Mater Lett 91:330–333

    Article  CAS  Google Scholar 

  12. Sharifi E, Salimi A, Shams E (2013) Electrocatalytic activity of nickel oxide nanoparticles as mediatorless system for NADH and ethanol sensing at physiological pH solution. Biosens Bioelectron 45:260–266

    Article  CAS  Google Scholar 

  13. Gorton L (1986) Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes. J Chem Soc Faraday Trans 1(82):1245–1258

    Article  Google Scholar 

  14. Manesh KM, Santhosh P, Gopalan A, Lee KP (2008) Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing. Talanta 75:1307–1314

    Article  CAS  Google Scholar 

  15. Zeng J, Wei W, Wu L, Liu X, Liu K, Li Y (2006) Fabrication of poly(toluidine blue O)/carbon nanotube composite nanowires and its stable low-potential detection of NADH. J Electroanal Chem 595:152–160

    Article  CAS  Google Scholar 

  16. Baskar S, Chang J-L, Zen J-M (2012) Simultaneous detection of NADH and H2O2 using flow injection analysis based on a bifunctional poly(thionine)-modified electrode. Biosens Bioelectron 33:95–99

    Article  CAS  Google Scholar 

  17. Saleh FS, Rahman MR, Okajima T, Mao L, Ohsaka T (2011) Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes. Bioelectrochemistry 80:121–127

    Article  CAS  Google Scholar 

  18. Yadav SK, Agrawal B, Goyal RN (2013) AuNPs-poly-DAN modified pyrolytic graphite sensor for the determination of Cefpodoxime Proxetil in biological fluids. Talanta 108:30–37

    Article  CAS  Google Scholar 

  19. Guedes da Silva Q, Barbosa NV, Troiani EP, Faria RC (2011) Electrochemical determination of norepinephrine on cathodically pretreated poly(1,5-diaminonaphthalene) modified electrode. Electroanalysis 23:1359–1364

    Article  CAS  Google Scholar 

  20. Abdelwahab AA, Lee H-M, Shim Y-B (2009) Selective determination of dopamine with a cibacron blue/poly-1,5-diaminonaphthalene composite film. Anal Chim Acta 650:247–253

    Article  CAS  Google Scholar 

  21. Zhang J, Yang S, Wang H, Wang S (2012) Enhanced sensitivity for biosensors: functionalized P1,5-Diaminonaphthalene multiwall carbon nanotube composite film-modified electrode. Electrochim Acta 85:467–474

    Article  CAS  Google Scholar 

  22. Abdel-Azzem M, Yousef US, Pierre G (1998) A cyclic voltammetric and coulometric study of a modified electrode prepared by electrooxidative polymerization of 1,5-diaminonaphthalene in aqueous acidic medium. Eur Polym J 34:819–826

    Article  CAS  Google Scholar 

  23. Abdel-Azzem M, Yousef US, Limosin D, Pierre G (1994) Electropolymerization of 1,5-diaminonaphthalene in acetonitrile and in aqueous solution. Synth Met 63:79–81

    Article  CAS  Google Scholar 

  24. Hathoot AA, Yousef US, Shatla AS, Abdel-Azzem M (2012) Voltammetric simultaneous determination of glucose, ascorbic acid and dopamine on glassy carbon electrode modified by NiNPs@poly (1,5-diaminonaphthalene). Electrochim Acta 85:531–537

    Article  CAS  Google Scholar 

  25. Galindo R, Gutiérrez S, Menéndez N, Herrasti P (2013) Catalytic properties of nickel ferrites for oxidation of glucose, β-nicotiamide adenine dinucleotide (NADH) and methanol. J Alloys Compd 586:S511–S515

    Article  Google Scholar 

  26. Park S-M (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers, 3rd edn. Wiley, Chichester

    Google Scholar 

  27. Stilwell DE, Park S-M (1988) Electrochemistry of conductive polymers II: electrochemical studies on growth properties of polyaniline. J Electrochem Soc 135:2254–2262

    Article  CAS  Google Scholar 

  28. Stilwell DE, Park S-M (1988) Electrochemistry of conductive polymers III: some physical and electrochemical properties observed from electrochemically grown polyaniline. J Electrochem Soc 135:2491–2496

    Article  CAS  Google Scholar 

  29. Ojani R, Raoof JB, Zavvarmahalleh SRH (2008) Electrocatalytic oxidation of methanol on carbon paste electrode modified by nickel ions dispersed into poly (1,5-diaminonaphthalene) film. Electrochim Acta 53:2402–2407

    Article  CAS  Google Scholar 

  30. Lobo MJ, Miranda AJ, Tuñón P (1997) Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanalysis 9:191–202

    Article  CAS  Google Scholar 

  31. Yang D-W, Liu H-H (2009) Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor. Biosens Bioelectron 25:733–738

    Article  Google Scholar 

  32. Moiroux J, Elving PJ (1978) Effects of adsorption, electrode material, and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes. Anal Chem 50:1056–1062

    Article  CAS  Google Scholar 

  33. Samec Z, Elving PJ (1983) Anodic oxidation of dihydronicotinamide adenine dinucleotide at solid electrodes; mediation by surface species. J Electroanal Chem Interfacial Electrochem 144:217–234

    Article  CAS  Google Scholar 

  34. Blaedel WJ, Jenkins RA (1975) Electrochemical oxidation of reduced nicotinamide adenine dinucleotide. Anal Chem 47:1337–1343

    Article  CAS  Google Scholar 

  35. Ojani R, Raoof JB, Zavvarmahalleh SRH (2009) Preparation of Ni/poly(1,5-diaminonaphthalene)-modified carbon paste electrode; application in electrocatalytic oxidation of formaldehyde for fuel cells. J Solid State Electr 13:1605–1611

    Article  CAS  Google Scholar 

  36. Zou Y, Xiang C, Sun L-X, Xu F (2008) Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosens Bioelectron 23:1010–1016

    Article  CAS  Google Scholar 

  37. Badawy WA, Ismail KM, Khalifa ZM, Medany SS (2012) Poly(2-aminobiphenyl), preparation, characterization, mechanism, and kinetics of the electropolymerization process. J Appl Polym Sci 125:3410–3418

    Article  CAS  Google Scholar 

  38. Badawy WA, Ismail KM, Medany SS (2006) Optimization of the electropolymerization of 1-amino-9,10-anthraquinone conducting films from aqueous media. Electrochim Acta 51:6353–6360

    Article  CAS  Google Scholar 

  39. Goyal RN, Singh SP (2006) Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim Acta 51:3008–3012

    Article  CAS  Google Scholar 

  40. Tsai Y-C, Huang J-D, Chiu C-C (2007) Amperometric ethanol biosensor based on poly(vinyl alcohol)-multiwalled carbon nanotube-alcohol dehydrogenase biocomposite. Biosens Bioelectron 22:3051–3056

    Article  CAS  Google Scholar 

  41. Wang Q, Tang H, Xie Q, Tan L, Zhang Y, Li B, Yao S (2007) Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochim Acta 52:6630–6637

    Article  CAS  Google Scholar 

  42. Agüí L, Peña-Farfal C, Yáñez-Sedeño P, Pingarrón JM (2007) Poly-(3-methylthiophene)/carbon nanotubes hybrid composite-modified electrodes. Electrochim Acta 52:7946–7952

    Article  Google Scholar 

  43. Huang M, Jiang H, Zhai J, Liu B, Dong S (2007) A simple route to incorporate redox mediator into carbon nanotubes/Nafion composite film and its application to determine NADH at low potential. Talanta 74:132–139

    Article  CAS  Google Scholar 

  44. Maroneze CM, Arenas LT, Luz RCS, Benvenutti EV, Landers R, Gushikem Y (2008) Meldola blue immobilized on a new SiO2/TiO2/graphite composite for electrocatalytic oxidation of NADH. Electrochim Acta 53:4167–4175

    Article  CAS  Google Scholar 

  45. Luz RCS, Damos FS, Tanaka AA, Kubota LT, Gushikem Y (2008) Electrocatalytic activity of 2,3,5,6-tetrachloro-1,4-benzoquinone/multi-walled carbon nanotubes immobilized on edge plane pyrolytic graphite electrode for NADH oxidation. Electrochim Acta 53:4706–4714

    Article  CAS  Google Scholar 

  46. Deng C, Chen J, Chen X, Xiao C, Nie Z, Yao S (2008) Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH. Electrochem Commun 10:907–909

    Article  CAS  Google Scholar 

  47. Kim YH, Kim T, Ryu JH, Yoo YJ (2010) Iron oxide/carbon black (Fe2O3/CB) composite electrode for the detection of reduced nicotinamide cofactors using an amperometric method under a low overpotential. Biosens Bioelectron 25:1160–1165

    Article  CAS  Google Scholar 

  48. Fotouhi L, Raei F, Heravi MM, Nematollahi D (2010) Electrocatalytic activity of 6,7-dihydroxy-3-methyl-9-thia-4,4a-diazafluoren-2-one/multi-wall carbon nanotubes immobilized on carbon paste electrode for NADH oxidation: application to the trace determination of NADH. J Electroanal Chem 639:15–20

    Article  CAS  Google Scholar 

  49. Zhu J, Chen X, Yang W (2010) A high performance electrochemical sensor for NADH based on graphite nanosheet modified electrode. Sens Actuators B Chem 150:564–568

    Article  CAS  Google Scholar 

  50. Yuan J, Chen J, Wu X, Fang K, Niu L (2011) A NADH biosensor based on diphenylalanine peptide/carbon nanotube nanocomposite. J Electroanal Chem 656:120–124

    Article  CAS  Google Scholar 

  51. Guo K, Qian K, Zhang S, Kong J, Yu C, Liu B (2011) Bio-electrocatalysis of NADH and ethanolbased on graphene sheets modified electrodes. Talanta 85:1174–1179

    Article  CAS  Google Scholar 

  52. You J-M, Jeon S (2011) Electrocatalytic oxidation of NADH on aglassy carbon electrode modified with MWCNT-Pd nanoparticles and poly3,4-ethylenedioxypyrrole. Electrochim Acta 56:10077–10082

    Article  CAS  Google Scholar 

  53. Teymourian H, Salimi A, Hallaj R (2012) Low potential detection of NADH based on Fe3O4 nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor. Biosens Bioelectron 33:60–68

    Article  CAS  Google Scholar 

  54. Sun Y, Ren Q, Liu X, Zhao S, Qin Y (2013) A simple route to fabricate controllable and stable multilayered all-MWNTs films and their applications for the detection of NADH at low potentials. Biosens Bioelectron 39:289–295

    Article  CAS  Google Scholar 

  55. Zhai X, Li Y, Liu G, Cao Y, Gao H, Yue C, Sheng N (2013) Electropolymerized toluidine blue O functionalized ordered mesoporous carbon-ionic liquid gel-modified electrode and its low-potential detection of NADH. Sens Actuators B Chem 178:169–175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Research Laboratory of Chemistry, Faculty of Electronic Engineering, El-Menoufia University, Egypt, and to the Academy of Scientific Research and Technology (ASRT), Egypt, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, K.M., Hathoot, A.A., Ashour, W.F.D. et al. Electrochemical and analytical applications for NADH detection at glassy carbon electrode modified with nickel nanoparticles dispersed on poly 1,5-diaminonaphthalene. J Solid State Electrochem 19, 1063–1072 (2015). https://doi.org/10.1007/s10008-014-2705-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2705-7

Keywords

Navigation