Skip to main content
Log in

Novel Carbon Quantum Dotted Reduced Graphene Oxide Nanosheets for Nano-molar Range Cadmium Quantification

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A carbon quantum dot (CQD)/reduced graphene oxide (rGO) nanocomposite modified glassy carbon electrode (GCE) was developed as a novel system for electrochemical detection of cadmium ion (Cd). The characterization of the synthesized CQD/rGO nanocomposite was done by Fourier transform infrared, high-resolution transmission electron microscopy, Raman, ultraviolet–visible, and X-ray diffraction analyses. The blending of CQD and rGO provides the sensor with a large surface area, high selectivity, sensitivity, stability, and excellent electrochemical compatibility. The modified CQD/rGO/GCE gives a linear response for Cd ion from 0.5 to 9 nM with a recognition limit of 0.3 nM. Over the studied scan rate, the composite exhibited a diffusion-controlled behavior. The modified electrode showed a good selectivity against interfering species (e.g., Zn2+, Ba2+, Bi2+, Hg2+, Cr3+, Pb2+, Ca2+, Ni2+, Mg2+, and Cu2+) with good reproducibility. This proposed detection system was proved to be cost-effective, precise, and easy to apply for environment monitoring such as groundwater, river water, and industrial effluents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.L.W. Ling, S.A. Ghani, Poly (4-vinylpyridine-co-aniline)-modified electrode synthesis, characterization, and application as cadmium (II) ion sensor. J. Solid State Electrochem. 17, 681–690 (2013). https://doi.org/10.1007/s10008-012-1910-5

    Article  CAS  Google Scholar 

  2. L. Nejdl, J. Kynicky, M. Brtnicky, M. Vaculovicova, V. Adam, Amalgam electrode-based electrochemical detector for on-site direct determination of cadmium (II) and lead (II) from soils. Sensor 17, 1–12 (2017). https://doi.org/10.3390/s17081835

    Article  CAS  Google Scholar 

  3. G. Bhanjana, N. Dilbaghi, R. Kumar, A. Umar, S. Kumar, SnO2 quantum dots as novel platform for electrochemical sensing of cadmium. Electrochim. Acta. 169, 97–102 (2015). https://doi.org/10.1016/j.electacta.2015.04.045

    Article  CAS  Google Scholar 

  4. Y. Si, J. Liu, Y. Chen, X. Miao, F. Ye, Z. Liu, J. Li, RGO/AuNPs/tetraphenyl porphyrin nanoconjugates-based electrochemical sensor for high-sensitive detection of cadmium ions. Anal. Methods. 10, 3631–3636 (2018). https://doi.org/10.1039/C8AY01020J

    Article  CAS  Google Scholar 

  5. R. Manjumeena, D. Duraibabu, T. Rajamuthuramalingam, R. Venkatesan, P.T. Kalaichelvan, Highly responsive glutathione functionalized green AuNP probe for precise colorimetric detection of Cd2+ contamination in the environment. RSC Adv. 5, 69124–69133 (2015). https://doi.org/10.1039/C5RA12427A

    Article  CAS  Google Scholar 

  6. S. Wu, K. Li, X. Dai, Z. Zhang, An ultrasensitive electrochemical platform based on imprinted chitosan/gold nanoparticles/graphenenanocomposite for sensing cadmium (II) ions. Microchem. J. 155, 104710–104718 (2020). https://doi.org/10.1016/.microc.2020.104710

    Article  CAS  Google Scholar 

  7. Y. Guo, Y. Zhang, H. Shao, Z. Wang, X. Wang, X. Jiang, Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. Anal. Chem. 86(17), 8530–8534 (2014). https://doi.org/10.1021/ac502461r

    Article  CAS  PubMed  Google Scholar 

  8. V.N. Mehta, H. Basu, R.K. Singhal, S.K. Kailasa, Simple and sensitive colorimetric sensing of Cd2+ ion using chitosandithiocarbamate functionalized gold nanoparticles as a probe. Sens. Actuators B 220, 850–858 (2015). https://doi.org/10.1016/j.snb.2015.05.105

    Article  CAS  Google Scholar 

  9. P. Huang, S. Li, N. Gao, F. Wu, Toward selective, sensitive, and discriminative detection of Hg2+ and Cd2+ via pH-modulated surface chemistry of glutathione-capped gold nanoclusters. Analyst 140, 7313–7321 (2015). https://doi.org/10.1039/C5AN01356A

    Article  CAS  PubMed  Google Scholar 

  10. H.R.L.Z. Zhad, Y.M. Rodriguez, R.Y. Lai, A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of Cd (II). J Electroanal. Chem. 803, 89–94 (2017). https://doi.org/10.1016/j.jelechem.2017.09.022

    Article  CAS  Google Scholar 

  11. Y. Noh, E.-J. Jo, H. Mun, Ahn Y–D, Kim M–G, Homogeneous and selective detection of cadmium ions by forming fluorescent cadmium-protein nanoclusters. Chemosphere 174, 524–530 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.025

    Article  CAS  PubMed  Google Scholar 

  12. Y. Zhang, X. Chen, J. Liu, G. Gao, X. Zhang, S. Hou, H. Wang, A highly selective and sensitive fluorescent chemosensor for distinguishing cadmium(II) from zinc(II) based on amide tautomerization. New J Chem. 42, 19245–19251 (2018). https://doi.org/10.1039/c8nj03465f

  13. S. Thatai, P. Khurana, S. Prasad, D. Kumar, A.M. Asiri, Plasmonic detection of Cd2+ ions using surface-enhanced Raman scattering active core–shell nanocomposites. Talanta 134, 568–575 (2015). https://doi.org/10.1016/j.talanta.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  14. D. Martín-Yerga, I. Álvarez-Martos, M.C. Blanco-López, C.S. Henry, M.T. Fernández-Abedul, Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes. Anal. Chim. Acta. 981, 24–33 (2017). https://doi.org/10.1016/j.aca.2017.05.027

    Article  CAS  PubMed  Google Scholar 

  15. J. Zhou, Q. Wang, F. Liu, S. Xiong, Electroanalysis of Cd2+ and Pb2+ based on Bi/Fe3O4/RTIL electrode. Electrocatalysis 12, 381–389 (2021). https://doi.org/10.1007/s12678-021-00661-y

    Article  CAS  Google Scholar 

  16. V.N. Mehta, J.V. Rohit, S.K. Kailasa, Functionalization of silver nanoparticles with 5-sulfoanthranilic acid dithiocarbamate for selective colorimetric detection of Mn2+ and Cd2+ ions. New J Chem. 40, 4566–4574 (2016). https://doi.org/10.1039/C5NJ03454J

    Article  CAS  Google Scholar 

  17. R. Golbedaghi, S. Jafari, M.R. Yaftian, R. Azadbakht, S. Salehzadeh, B. Jaleh, Determination of cadmium (II) ion by atomic absorption spectrometry after cloud point extraction. J Iran Chem. Soc. 9, 251–256 (2012). https://doi.org/10.1007/s13738-011-0018-7

    Article  CAS  Google Scholar 

  18. O.V. Lundovskaya, A.R. Tsygankova, N.I. Petrova, A.I. Saprykin, Analysis of cadmium and cadmium oxide by inductively coupled plasma atomic emission spectrometry. J Anal. Chem. 73, 877–883 (2018). https://doi.org/10.1134/S1061934818090058

    Article  CAS  Google Scholar 

  19. M. Musa, A. Kikuchi, N.E. Ismail, J. Jaafar, Z.A. Majid, M.R. Salim, K. Tanaka, Application of ion chromatography for the assessment of cadmium adsorption in simulated wastewater by activated carbon. Desalin Water Treat. 52, 3616–3622 (2014). https://doi.org/10.1080/19443994.2013.854099

    Article  CAS  Google Scholar 

  20. Z.-X. Wang, Y.-X. Guo, S.-N. Ding, Fluorometric determination of cadmium (II) and mercury (II) using nanoclusters consisting of a gold-nickel alloy. Microchim. Acta. 182, 2223–2231 (2015). https://doi.org/10.1007/s00604-015-1563-z

    Article  CAS  Google Scholar 

  21. W. Jin, P. Huang, F. Wu, L.-H. Ma, Ultrasensitive colorimetric assay of cadmium ion based on silver nanoparticles functionalized with 5-sulfosalicylic acid for wide practical applications. Analyst 140, 3507–3513 (2015). https://doi.org/10.1039/c5an00230c

    Article  CAS  PubMed  Google Scholar 

  22. Y. Dong, L. Ding, X. Jin, N. Zhu, Silver nanoparticles capped with chalcon carboxylic acid as a probe for colorimetric determination of cadmium (II). Microchim. Acta. 184, 3357–3362 (2017). https://doi.org/10.1007/s00604-017-2358-1

    Article  CAS  Google Scholar 

  23. Z. Koudelkova, T. Syrovy, P. Ambrozova, Z. Moravec, L. Kubac, D. Hynek, L. Richtera, V. Adam, Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide. Sensors 17, 1–14 (2017). https://doi.org/10.3390/s17081832

    Article  CAS  Google Scholar 

  24. X. Chai, L. Zhang, Y. Tian, Ratiometric electrochemical sensor for selective monitoring of cadmium ions using biomolecular recognition. Anal. Chem. 86, 10668–10673 (2014). https://doi.org/10.1021/ac502521f

    Article  CAS  PubMed  Google Scholar 

  25. J. Meng, D. Li, L. Zhang, W. Gao, K. Huang, C. Geng, Y. Guan, H. Ming, W. Jiang, J. Liang, Degradation of norfloxacin by electrochemical oxidation using Ti/Sno2-Sb electrode doped with Ni or Mo. Electrocatalysis 12, 436–446 (2021). https://doi.org/10.1007/s12678-021-00663-w

    Article  CAS  Google Scholar 

  26. A.N. Jijana, N. Mphuthi P. Shumbula, S. Vilakazi, L. Sikhwivhilu, The ultra-sensitive electrochemical detection of As (III) in ground water using disposable L-cysteine/lipoic acid functionalised gold nanoparticle modified screen-printed electrodes. Electrocatalysis 12, 310–325 (2021). https://doi.org/10.1007/s12678-021-00658-7

  27. K. Mielech-Łukasiewicz, M. Domalewska, Electrochemical determination of ciclopirox olamine by using boron-doped diamond electrode modified with overoxidized polypyrrole film. Electrocatalysis 12, 283–294 (2021). https://doi.org/10.1007/s12678-021-00651-0

    Article  CAS  Google Scholar 

  28. Y.H. Chang, P.M. Woi, Y.B. Alias, Electrochemical characterization of melamine electropolymerized in deep eutectic solvents for selective detection of dopamine. Electrocatalysis 12, 238–250 (2021). https://doi.org/10.1007/s12678-021-00648-9

    Article  CAS  Google Scholar 

  29. Y. Wang, L. Wanga, W. Huang, T. Zhang, X. Hu, J.A. Perman, S. Ma, Metal-organic framework and conducting polymer based electrochemical sensor for high performance cadmium ions Detection. J Mater. Chem. A 5, 8385–8393 (2017). https://doi.org/10.1039/C7TA01066D

    Article  CAS  Google Scholar 

  30. X. Lia, H. Wen, Q. Fu, D. Peng, J. Yua, Q. Zhang, X. Huang, Morphology-dependent NiO modified glassy carbon electrode surfacefor lead (II) and cadmium (II) detection. Appl. Surf. Sci. 363, 7–12 (2016). https://doi.org/10.1016/j.apsusc.2015.12.011

    Article  CAS  Google Scholar 

  31. A.K. Wanekaya, Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 136, 4383–4391 (2011). https://doi.org/10.1039/c1an15574a

  32. S.K. Ponnaiah, P. Periakaruppan, B. Vellaichamy, T. Paulmony, R. Selvanathan, Picomolar-level electrochemical detection of thiocyanate in the saliva samples of smokers and non-smokers of tobacco using carbon dots doped Fe3O4 nanocomposite embedded on g-C3N4 nanosheets. Electrochim. Acta 283, 914–921 (2018). https://doi.org/10.1016/j.electacta.2018.07.012

    Article  CAS  Google Scholar 

  33. J. Li, J.–J Zhu, Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 138, 2506–2515 (2013). https://doi.org/10.1039/c3an36705c

  34. M.J. Molaei, Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC Adv 9, 6460–6481 (2019). https://doi.org/10.1039/c8ra08088g

  35. D. Yoo, Y. Park, B. Cheon, M.-H. Park, 2019 Carbon dots as an effective fluorescent sensing platform for metal ion detection. Nanoscale Res. Lett. 14, 272-285. https://doi.org/10.1186/s11671-019-3088-6

  36. P. Devi, P. Rajput, A. Thakur, K.-H. Kim, P. Kumar, Recent advances in carbon quantum dot-based sensing of heavy metals in water. Trends Anal. Chem. 114, 171–195 (2019). https://doi.org/10.1016/j.trac.2019.03.003

    Article  CAS  Google Scholar 

  37. B.B.R. Khan, P. Periakaruppan, S.K. Ponnaiah, G. Venkatachalam, B. Jeyaprabha, A new nanocomposite electrode of carbon quantum dots doped functionalized multi-walled carbon nanotubes for lethal mercury sensing. J Cluster Sci. 32, 135–144 (2020). https://doi.org/10.1007/s10876-020-01770-2

    Article  CAS  Google Scholar 

  38. T. Kokulnathan, S. Sakthinathan, S.-M. Chen, R. Karthik, T.-W. Chiu, Hexammine cobalt(iii) coordination complex grafted reduced graphene oxide composite for sensitive and selective electrochemical determination of morin in fruit samples. Inorg. Chem. Front. 1145-1155 (2018). https://doi.org/10.1039/C8QI00055G

  39. R. Karthik, J.V. Kumar, S.-M. Chen, T. Kokulnathan, T.-W. Chen, S. Sakthinathan, T.-W. Chiu, V. Muthuraj, Development of novel 3D flower-like praseodymium molybdate decorated reduced graphene oxide: an efficient and selective electrocatalyst for the detection of acetylcholinesterase inhibitor methyl parathion. Sens. Actuators B Chem. 270, 353–361 (2018). https://doi.org/10.1016/j.snb.2018.05.054

  40. M.G. Ashritha, S.R. Rondiya, R.W. Cross, N.Y. Dzade, S.D. Dhole, K. Hareesh, D.V. Sunitha, Experimental and computational studies of sonochemical assisted anchoring of carbon quantum dots on reduced graphene oxide sheets towards the photocatalytic activity. Appl. Surf. Sci. 545, 148962-148972 (2021). https://doi.org/10.1016/j.apsusc.2021.148962

  41. E. Aawani, N. Memarian, H.R. Dizaji, Synthesis and characterization of reduced graphene oxide–V2O5 nanocomposite for enhanced photocatalytic activity under different types of irradiation. J Phys. Chem. Solids 125, 8–15 (2019). https://doi.org/10.1016/j.jpcs.2018.09.028

    Article  CAS  Google Scholar 

  42. T.F. Emiru, D.W. Ayele, Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt J Basic. Appl Sci. 4, 74–79 (2017). https://doi.org/10.1016/j.ejbas.2016.11.002

    Article  Google Scholar 

  43. M.F. Zainuddin, N.H.N. Raikhan, N.H. Othman, W.F.H. Abdullah, Synthesis of reduced graphene oxide (rGO) using different treatments of graphene oxide (GO). Mater. Sci. Eng. 358, 1–6 (2018). https://doi.org/10.1088/1757-899X/358/1/012046

    Article  Google Scholar 

  44. X. Jia, J. Lia, E. Wang, One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 4, 5572–5575 (2012). https://doi.org/10.1039/c2nr31319g

  45. Y, Dong. N, Zhou. X, Lin. J, Lin. Y, Chi. G, Chen. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem Mater. 22, 5895-5899 (2010). https://doi.org/10.1021/cm1018844

  46. A.K. Roy, S.-M. Kim, P. Paoprasert, S.-Y. Park, I. In, Preparation of biocompatible and antibacterial carbon quantum dots derived from resorcinol and formaldehyde spheres. RSC Adv. 5, 31677–31682 (2015). https://doi.org/10.1039/c5ra01506e

    Article  CAS  Google Scholar 

  47. S. Cai, H. Pan, Á. González-Vila, T. Guo, D.C. Gillan, R. Wattiez, C. Caucheteur, Selective detection of cadmium ions using plasmonic optical fiber gratings functionalized with bacteria. Opt. Express 28(13), 19740–19749 (2020). https://doi.org/10.1364/OE.397505

    Article  CAS  PubMed  Google Scholar 

  48. H. Jin, F. Rui, J. Chongyue, L. Zhilin, W. Min, Y. Ping, X. Yuanhua, Highly sensitive detection of trace Hg2+ via PdNPs/g-C3N4 nanosheet-modified electrodes using DPV. Microchem. J 152, 104356–104367 (2020). https://doi.org/10.1016/j.microc.2019.104356

    Article  CAS  Google Scholar 

  49. W. Huang, Y. Liu, N. Wang, G. Song, X. Yin, L. Zhang, X. Ni, W. Xu, A Sensitive electrochemical sensor based on ion imprinted polymers with gold nanoparticles for high selective detecting Cd (II) ions in real samples. J Inorg Organomet Polym Mater. 31, 2043–2053 (2021). https://doi.org/10.1007/s10904-021-01892-8

    Article  CAS  Google Scholar 

  50. Z. Dahaghin, P.A. Kilmartin, H. Z. Mousavi, Novel ion imprinted polymer electrochemical sensor for the selective, detection of lead(II), Food Chem. 303, 125374–125381. (2020). https://doi.org/10.1016/j.foodchem.2019.125374

  51. M.B. Gumpu, M. Veerapandianc, U.M. Krishnand, J.B.B. Rayappan, Simultaneous electrochemical detection of Cd (II), Pb (II), As (III) and Hg (II) ions using ruthenium(II)-textured graphene oxide nanocomposites. Talanta 162, 574–582 (2017). https://doi.org/10.1016/j.talanta.2016.10.076

    Article  CAS  PubMed  Google Scholar 

  52. M.Y. Pudza, Z.Z. Abidin, S. Abdul-Rashid, F.M. Yasin, A.S.M. Noor, J. Abdullah, Selective and simultaneous detection of cadmium, lead and copper by tapioca-derived carbon dot–modified electrode. Environ. Sci. Pollut. Res. 27, 1–10 (2020). https://doi.org/10.1007/s11356-020-07695-7

    Article  CAS  Google Scholar 

  53. J.-H. Yoon, J. Yang, J.P. Kim, J.S. Bae, Y.-B. Shim, M.-S. Won, Simultaneous detection of Cd (II), Pb (II), Cu (II), and Hg (II) ions in dye waste water using a boron doped diamond electrode with DPASV. Bull Korean Chem. Soc. 31, 141–145 (2010). https://doi.org/10.5012/bkcs.2010.31.01.140

    Article  CAS  Google Scholar 

  54. A.E. Beltagi, E.M. Ghoneim, M.M. Ghoneim, Controlled synthesis, simultaneous determination of cadmium (II), lead (II), copper (II) and mercury (II) by square-wave anodic stripping voltammetry at a montmorillonite-calcium modified carbon paste electrode. Intern. J Environ. Anal. Chem. 91, 17–32 (2011). https://doi.org/10.1080/03067310902962577

    Article  CAS  Google Scholar 

  55. A. Aravind, B. Mathew, Tailoring of nanostructured material as an electrochemical sensor and sorbent for toxic Cd (II) ions from various real samples. J Anal. Sci. Technol. 9, 1–17 (2018). https://doi.org/10.1186/s40543-018-0153-1

    Article  CAS  Google Scholar 

  56. W. Wu, M. Jia, Z. Wang, W. Zhang, Q. Zhang, G. Liu, Z. Zhang, P. Li, Simultaneous voltammetric determination of cadmium (II), lead (II), mercury (II), zinc (II), and copper (II) using a glassy carbon electrode modified with magnetite (Fe3O4) nanoparticles and fluorinated multiwalled carbon nanotubes. Microchim. Acta. 186, 1–10 (2019). https://doi.org/10.1007/s00604-018-3216-5

    Article  CAS  Google Scholar 

  57. Y. Wang, Z. Nie, X. Li, Y. Zhao, H. Wang, Highly sensitive and selective electrochemical sensor based on porous graphitic carbon nitride/CoMn2O4 nanocomposite toward heavy metal ions. Sens. Actuators B Chem. 346, 130539–130548 (2021). https://doi.org/10.1016/j.snb.2021.130539

    Article  CAS  Google Scholar 

  58. X.-Z. Yao, Z. Guo, Q.H. Yuan, Z.G. Liu, J.H. Liu, X.J. Huang, Exploiting differential electrochemical stripping behaviors of Fe3O4 nanocrystals toward heavy metal ions by crystal cutting. ACS Appl. Mater. Interfaces 6(15), 12203–12213 (2014). https://doi.org/10.1021/am501617a

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Periakaruppan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RasulKhan, B., Ponnaiah, S.K., Balasubramanian, J. et al. Novel Carbon Quantum Dotted Reduced Graphene Oxide Nanosheets for Nano-molar Range Cadmium Quantification. Electrocatalysis 13, 435–446 (2022). https://doi.org/10.1007/s12678-022-00732-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00732-8

Keywords

Navigation