Skip to main content
Log in

Combinatorial Synthesis of Gold-Based Thin Films for Improved Electrocatalytic Conversion of CO2 to CO

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Carbon dioxide electroreduction (CO2ER) was studied on 35 gold-based thin film catalysts sputtered on glassy carbon disks. A sputter-down setup was used for the deposition of these thin films in a combinatorial manner. Zinc and silver were employed in combination with gold in order to obtain new catalysts. Linear sweep voltammetry was employed to obtain the selectivity profile of each catalyst. Among the 35 catalysts, three ternary combinations (Au14Ag34Zn52, Au32Ag51Zn17, and Au16Ag10Zn74) and one binary combination (Au80Zn20) were identified as being active catalysts, reducing the dissolved CO2 in favor of proton reduction. Two ternary catalysts (Au16Ag10Zn74 and Au32Ag51Zn17) exhibited higher selectivity and lower overpotential for CO2ER than the pure metals. The Au80Zn20 binary catalyst exhibited the longest potential range where the selectivity for CO2ER remains constant. A decrease of the gold loading between 18 and 88 % was obtained for these catalysts, suggesting that they are promising candidates for an industrial application of CO2ER. Electrochemical impedance spectroscopy proved that the mechanism of CO2ER, involving two successive one-electron transfers, is identical on pure metals and combined sputtered catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Centi, S. Perathoner, Catal. Today 148, 191 (2009)

    Article  CAS  Google Scholar 

  2. E.J. Dufek, T.E. Lister, M.E. McIlwain, J. Appl. Electrochem. 41, 623 (2001)

    Article  Google Scholar 

  3. G.B. Stevens, T. Reda, B. Raguse, J. Electroanal. Chem. 526, 125 (2002)

    Article  CAS  Google Scholar 

  4. D.T. Whipple, P.J.A. Kenis, J. Phys. Chem. Lett. 1, 3451 (2010)

    Article  CAS  Google Scholar 

  5. E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Chem. Soc. Rev. 38, 89 (2009)

    Article  CAS  Google Scholar 

  6. E.J. Maginn, J. Phys. Chem. Lett. 1, 3478 (2010)

    Article  CAS  Google Scholar 

  7. K. Hara, A. Kudo, T. Sakata, J. Electroanal. Chem. 391, 141 (1995)

    Article  Google Scholar 

  8. Y. Hori, A. Murata, K. Kikuchi, S. Suzuki, J. Chem. Soc. Chem. Comm. 10, 728 (1987)

    Article  Google Scholar 

  9. B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B.A. Rosen, R. Haasch, J. Abiade, A.L. Yarin, A. Salehi-Khojin, Nature Comm. 4, 2819 (2013)

    Google Scholar 

  10. J.L. DiMeglio, J. Rosenthal, J. Amer. Chem. Soc. 135, 8798 (2013)

    Article  CAS  Google Scholar 

  11. J.S. Cooper, M.K. Jeon, P.J. McGinn, Electrochem. Comm. 10, 1545 (2008)

    Article  CAS  Google Scholar 

  12. J.S. Cooper, M.K. Jeon, P.J. McGinn, J. Power Sources 185, 913 (2008)

    Article  Google Scholar 

  13. J.S. Cooper, M.K. Jeon, P.J. McGinn, J. Power Sources 192, 391 (2009)

    Article  Google Scholar 

  14. T. Ohmori, A. Nakayama, H. Mametsuka, E. Suzuki, J. Electroanal. Chem. 514, 51 (2001)

    Article  CAS  Google Scholar 

  15. V. Lates, A. Falch, J. Jordaan, R. Peach, R.J. Kriek, Electrochim. Acta 128, 75 (2014)

    Article  CAS  Google Scholar 

  16. E. Slavcheva, G. Ganske, G. Topalov, W. Mokwa, U. Schnakenberg, Appl. Surf. Sci. 255, 6479 (2009)

    Article  CAS  Google Scholar 

  17. J.S. Cooper, P.J. McGinn, J. Power Sources 163, 330 (2006)

    Article  CAS  Google Scholar 

  18. C.M. Sanchez-Sanchez, J. Souza-Garcia, E. Herrero, A. Aldaz, J. Electroanal. Chem. 668, 51 (2012)

    Article  CAS  Google Scholar 

  19. M. Gattrell, N. Gupta, A. Co, J. Electroanal. Chem. 594, 1 (2006)

    Article  CAS  Google Scholar 

  20. C. Delacourt, P.L. Ridgway, J.B. Kerr, J. Newman, J. Electrochem. Soc. 155, B42 (2008)

    Article  CAS  Google Scholar 

  21. I.D. Raistrick, D.R. Franceschetti, R.J. Macdonald, in Impedance spectroscopy. Theory, experiment, and applications, ed. by E. Barsoukov, J.R. Macdonald (Wiley, Hoboken, 2005), p. 71

    Google Scholar 

  22. E. Mendez, M.E. Martins, C.F. Zinola, J. Electroanal. Chem. 477, 41 (1999)

    Article  CAS  Google Scholar 

  23. H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Norskov, J. Phys. Chem. Lett. 4, 388 (2013)

    Article  CAS  Google Scholar 

  24. H. Noda, S. Ikeda, A. Yamamoto, H. Einaga, K. Ito, Bull. Chem. Soc. Jpn. 68, 1885 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Research Focus Area for Chemical Resource Beneficiation (CRB) for funding of this project and Dr. Louwrens Tiedt for his assistance in obtaining the scanning electron microscopy images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roelof Jacobus Kriek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lates, V., Falch, A. & Kriek, R.J. Combinatorial Synthesis of Gold-Based Thin Films for Improved Electrocatalytic Conversion of CO2 to CO. Electrocatalysis 6, 308–314 (2015). https://doi.org/10.1007/s12678-015-0248-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0248-z

Keywords

Navigation