Skip to main content

Current Trends in Electrodeposition of Electrocatalytic Coatings

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

Among different methods of fabrication of electrocatalytic coatings, the electrodeposition seems to be the most convenient and widely used. The electrodeposition is an available, inexpensive, versatile, simple and fast technique which allows synthesizing materials with controlled composition, structure, surface morphology and electrocatalytic activity. This review reports recent trends, promising directions and novel approaches concerning cathodic electrodeposition and characterization of electrocatalytic coatings. A special attention is paid to the electrocatalysts based on electrodeposited nickel, iron, cobalt, copper, chromium, noble metals, their alloys and composites. The application of non-stationary current regimes (pulse current and linear potential sweep) as well as new type of plating baths (room-temperature ionic liquids and deep eutectic solvents) is highlighted. The influence of alloying and after-treatment (dealloying, selective anodic dissolution, etc.) on the electrocatalytic properties of electrodeposits is considered. Favorable influence of the formation of nanostructures upon the electrocatalytic performance of electrodeposited materials is shown. Potential ways for improving the electrocatalytic characteristics of electrodeposited coatings are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mohanty US (2011) Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem 41(3):257–270. https://doi.org/10.1007/s10800-010-0234-3

    Article  CAS  Google Scholar 

  2. Safizadeh F, Ghali E, Houlachi G (2015) Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int J Hydrogen Energy 40:256–274. https://doi.org/10.1016/j.ijhydene.2014.10.109

    Article  CAS  Google Scholar 

  3. Amadelli R, Ferro S, Barison S, Kötz R, Schnyder B, Velichenko AB (2013) A comparative study of cathodic electrodeposited nickel hydroxide films electrocatalysts. Electrocatalysis 4(4):329–337. https://doi.org/10.1007/s12678-013-0154-1

    Article  CAS  Google Scholar 

  4. Lyons MEG, Cakara A, O’Brien P, Godwin I, Doyle RL (2012) Redox, pH sensing and electrolytic water splitting properties of electrochemically generated nickel hydroxide thin films in aqueous alkaline solution. Int J Electrochem Sci 7(12):11768–11795. http://www.electrochemsci.org/papers/vol7/71211768.pdf

  5. Chialvo AC, Gennero de Chialvo MR (1991) Electrocatalytic activity of nickel black electrodes for the hydrogen evolution reaction in alkaline solutions. J Appl Electrochem 21(5):440–445. https://doi.org/10.1007/BF01024582

    Article  CAS  Google Scholar 

  6. Jamesh MI (2016) Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media. J Power Sources 333:213–236. https://doi.org/10.1016/j.jpowsour.2016.09.161

    Article  CAS  Google Scholar 

  7. Chen R, Trieu V, Schley B, Natter H, Kintrup J, Bulan A, Weber R, Hempelmann R (2013) Anodic electrocatalytic coatings for electrolytic chlorine production: a review. Z Phys Chem 227(5):651–666. https://doi.org/10.1524/zpch.2013.0338

    Article  CAS  Google Scholar 

  8. Shmychkova OB, Knysh VA, Luk’yanenko TV, Amadelli R, Velichenko AB (2018) Electrocatalytic processes on PbO2 electrodes at high anodic potentials. Surf Eng Appl Electrochem 54(1):38–46. https://doi.org/10.3103/S1068375518010143

    Article  Google Scholar 

  9. Li X, Pletcher D, Walsh FC (2011) Electrodeposited lead dioxide coatings. Chem Soc Rev 40:3879–3894. https://doi.org/10.1039/C0CS00213E

    Article  CAS  Google Scholar 

  10. González-Buch C, Herraiz-Cardona I, Ortega E, García-Antón J, Pérez-Herranz V (2013) Synthesis and characterization of macroporous Ni, Co and Ni-Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. Int J Hydrogen Energy 38(25):10157–10169. https://doi.org/10.1016/j.ijhydene.2013.06.016

    Article  CAS  Google Scholar 

  11. Raj IA, Vasu KI (1990) Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20(1):32–38. https://doi.org/10.1007/BF01012468

    Article  CAS  Google Scholar 

  12. Raj IA (1993) Nickel-based, binary-composite electrocatalysts for the cathodes in the energy-efficient industrial production of hydrogen from alkaline-water electrolytic cells. J Mater Sci 28(16):4375–4382. https://doi.org/10.1007/BF01154945

    Article  CAS  Google Scholar 

  13. Raj IA, Vasu KI (1992) Transition metal-based cathodes for hydrogen evolution in alkaline solution: electrocatalysis on nickel-based ternary electrolytic codeposits. J Appl Electrochem 22(5):471–477. https://doi.org/10.1007/BF01077551

    Article  CAS  Google Scholar 

  14. Torabinejad V, Aliofkhazraei M, Assareh S, Allahyarzadeh MH, Rouhaghdam AS (2017) Electrodeposition of Ni-Fe alloys, composites, and nano coatings – a review. J Alloys Compd 691:841–859. https://doi.org/10.1016/j.jallcom.2016.08.329

    Article  CAS  Google Scholar 

  15. Chi B, Li J, Yang X, Gong Y, Wang N (2005) Deposition of Ni-Co by cyclic voltammetry method and its electrocatalytic properties for oxygen evolution reaction. Int J Hydrogen Energy 30(1):29–34. https://doi.org/10.1016/j.ijhydene.2004.03.032

    Article  CAS  Google Scholar 

  16. Abdel-Karim R, Ramadan M, El-Raghy SM (2018) Morphology and electrochemical characterization of electrodeposited nanocrystalline Ni-Co electrodes for methanol fuel cells. J Nanomater. https://doi.org/10.1155/2018/9870732

    Article  Google Scholar 

  17. Ullal Y, Hegde AC (2014) Electrodeposition and electro-catalytic study of nanocrystalline Ni–Fe alloy. Int J Hydrogen Energy 39:10485–10492. https://doi.org/10.1016/j.ijhydene.2014.05.016

    Article  CAS  Google Scholar 

  18. Potvin E, Brossard L (1992) Electrocatalytic activity of Ni-Fe anodes for alkaline water electrolysis. Mater Chem Phys 31(4):311–318. https://doi.org/10.1016/0254-0584(92)90192-B

    Article  CAS  Google Scholar 

  19. Gong M, Dai H (2015) A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res 8(1):23–39. https://doi.org/10.1007/s12274-014-0591-z

    Article  CAS  Google Scholar 

  20. Solmaz R, Kardaş G (2009) Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim Acta 54:3726–3734. https://doi.org/10.1016/j.electacta.2009.01.064

    Article  CAS  Google Scholar 

  21. Manazoğlu M, Hapçi G, Orhan G (2016) Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium. J Appl Electrochem 46(2):191–204. https://doi.org/10.1007/s10800-015-0908-y

    Article  CAS  Google Scholar 

  22. Abdel-Karim R, Halim J, El-Raghy S, Nabil M, Waheed A (2012) Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution. J Alloys Compd 530:85–90. https://doi.org/10.1016/j.jallcom.2012.03.063

    Article  CAS  Google Scholar 

  23. Shetty S, Mohamed Jaffer Sadiq M, Bhat DK, Hegde AC (2017) Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis. J Electroanal Chem 796:57–65. https://doi.org/10.1016/j.jelechem.2017.05.002

    Article  CAS  Google Scholar 

  24. Xu C, Zhou JB, Zeng M, Fu XL, Liu XJ, Li JM (2016) Electrodeposition mechanism and characterization of Ni–Mo alloy and its electrocatalytic performance for hydrogen evolution. Int J Hydrogen Energy 41(31):13341–13349. https://doi.org/10.1016/j.ijhydene.2016.06.205

    Article  CAS  Google Scholar 

  25. Shetty S, Hegde AC (2017) Magnetically induced electrodeposition of Ni-Mo alloy for hydrogen evolution reaction. Electrocatalysis 8(3):179–188. https://doi.org/10.1007/s12678-017-0350-5

    Article  CAS  Google Scholar 

  26. Golgovici F, Pumnea A, Petica A, Manea AC, Brincoveanu O, Enachescu M, Anicai L (2018) Ni–Mo alloy nanostructures as cathodic materials for hydrogen evolution reaction during seawater electrolysis. Chem Pap 72(8):1889–1903. https://doi.org/10.1007/s11696-018-0486-7

    Article  CAS  Google Scholar 

  27. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  Google Scholar 

  28. Abbott AP, McKenzie KJ (2006) Application of ionic liquids to the electrodeposition of metals. Phys Chem Chem Phys 8:4265–4279. https://doi.org/10.1039/B607329H

    Article  CAS  Google Scholar 

  29. Abbott AP, Ryder KS, König U (2008) Electrofinishing of metals using eutectic based ionic liquids. Trans Inst Met Finish 86:196–204. https://doi.org/10.1179/174591908X327590

    Article  CAS  Google Scholar 

  30. Abbott AP, Frisch G, Ryder KS (2013) Electroplating using ionic liquids. Annu Rev Mater Res 43:335–358. https://doi.org/10.1146/annurev-matsci-071312-121640

    Article  CAS  Google Scholar 

  31. Wang S, Zou X, Lu Y, Rao S, Xie X, Pang Z, Lu X, Xu Q, Zhou Z (2018) Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution. Int J Hydrogen Energy 43:15673–15686. https://doi.org/10.1016/j.ijhydene.2018.06.188

    Article  CAS  Google Scholar 

  32. Xia M, Lei T, Lv N, Li N (2014) Synthesis and electrocatalytic hydrogen evolution performance of Ni-Mo-Cu alloy coating electrode. Int J Hydrogen Energy 39(10):4794–4802. https://doi.org/10.1016/j.ijhydene.2014.01.091

    Article  CAS  Google Scholar 

  33. Allam M, Benaicha M, Dakhouche A (2018) Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis. Int J Hydrogen Energy 43(6):3394–3405. https://doi.org/10.1016/j.ijhydene.2017.08.012

    Article  CAS  Google Scholar 

  34. Solmaz R, Döner A, Şahin I, Yüce AO, Kardaş G, Yazici B, Erbil M (2009) The stability of NiCoZn electrocatalyst for hydrogen evolution activity in alkaline solution during long-term electrolysis. Int J Hydrogen Energy 34(19):7910–7918. https://doi.org/10.1016/j.ijhydene.2009.07.086

    Article  CAS  Google Scholar 

  35. Herraiz-Cardona I, Ortega E, Vázquez-Gómez L, Pérez-Herranz V (2011) Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. Int J Hydrogen Energy 36(18):11578–11587. https://doi.org/10.1016/j.ijhydene.2011.06.067

    Article  CAS  Google Scholar 

  36. Koboski KR, Nelsen EF, Hampton JR (2013) Hydrogen evolution reaction measurements of dealloyed porous NiCu. Nanoscale Res Lett 8:528. https://doi.org/10.1186/1556-276X-8-528

    Article  CAS  Google Scholar 

  37. Cheng C, Shah SSA, Najam T, Zhang L, Qi X, Wei Z (2017) Highly active electrocatalysis of hydrogen evolution reaction in alkaline medium by Ni–P alloy: a capacitance-activity relationship. J Energy Chem 26(6):1245–1251. https://doi.org/10.1016/j.jechem.2017.09.028

    Article  Google Scholar 

  38. Protsenko VS, Vasil’eva EA, Smenova IV, Baskevich AS, Danilenko IA, Konstantinova TE, Danilov FI (2015) Electrodeposition of Fe and composite Fe/ZrO2 coatings from a methanesulfonate bath. Surf Eng Appl Electrochem 51(1):65–75. https://doi.org/10.3103/S1068375515010123

    Article  Google Scholar 

  39. De Carvalho J, Tremiliosi Filho G, Avaca LA, Gonzalez ER (1989) Electrodeposits of iron and nickel-iron for hydrogen evolution in alkaline solutions. Int J Hydrogen Energy 14(3):161–165. https://doi.org/10.1016/0360-3199(89)90049-9

    Article  Google Scholar 

  40. Elezović NR, Jović VD, Krstajić NV (2005) Kinetics of the hydrogen evolution reaction on Fe–Mo film deposited on mild steel support in alkaline solution. Electrochim Acta 50:5594–5601. https://doi.org/10.1016/j.electacta.2005.03.037

    Article  CAS  Google Scholar 

  41. Sequeira CAC, Santos DMF, Brito PSD (2011) Electrocatalytic activity of simple and modified Fe–P electrodeposits for hydrogen evolution from alkaline media. Energy 36:847–853. https://doi.org/10.1016/j.energy.2010.12.030

    Article  CAS  Google Scholar 

  42. Bersirova OL, Bilyk SV, Kublanovs’kyi VS (2018) Electrochemical synthesis of Fe–W nanostructural electrocatalytic coatings. Mater Sci 53(5):732–738. https://doi.org/10.1007/s11003-018-0130-2

    Article  CAS  Google Scholar 

  43. Brossard L (1992) Cobalt black electrodes for the oxygen evolution reaction from electrolysis of 40 wt% KOH. Int J Hydrogen Energy 17(9):671–676. https://doi.org/10.1016/0360-3199(92)90085-B

    Article  CAS  Google Scholar 

  44. Brossard L, Lessard M (1993) Preparation of Co–Fe electrodeposits and their performance in relation to oxygen evolution in 40 wt% KOH at 70 °C. Int J Hydrogen Energy 18(10):807–816. https://doi.org/10.1016/0360-3199(93)90135-W

    Article  CAS  Google Scholar 

  45. Miulovic SM, Maslovara SL, Seovic MM, Radak BB, Kaninski MPM (2012) Energy saving in electrolytic hydrogen production using Co–Cr activation—Part I. Int J Hydrogen Energy 37:16770–16775. https://doi.org/10.1016/j.ijhydene.2012.08.075

    Article  CAS  Google Scholar 

  46. Kaninski MPM, Seović MM, Miulović SM, Žugić DL, Tasić GS, Šaponjić ĐP (2013) Cobalt-chrome activation of the nickel electrodes for the HER in alkaline water electrolysis—Part II. Int J Hydrogen Energy 38:1758–1764. https://doi.org/10.1016/j.ijhydene.2012.11.117

    Article  CAS  Google Scholar 

  47. Döner A, Solmaz R, Kardaş G (2011) Enhancement of hydrogen evolution at cobalt–zinc deposited graphite electrode in alkaline solution. Int J Hydrogen Energy 36:7391–7397. https://doi.org/10.1016/j.ijhydene.2011.03.083

    Article  CAS  Google Scholar 

  48. Vernickaite E, Tsyntsarua N, Cesiulis H (2016) Electrodeposited Co-W alloys and their prospects as effective anode for methanol oxidation in acidic media. Surf Coat Technol 307:1322–1328. https://doi.org/10.1016/j.surfcoat.2016.07.049

    Article  CAS  Google Scholar 

  49. Abdolmaleki M, Bodaghi A, Hosseini J, Jamehbozorgi S (2018) Preparation of nanostructured Co–Mo alloy electrodes and investigation of their electrocatalytic activity for hydrazine oxidation in alkaline medium. J Chin Chem Soc, 1–7. https://doi.org/10.1002/jccs.201700344

  50. Solmaz R, Döner A, Kardaş G (2008) Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction. Electrochem Commun 10(12):1909–1911. https://doi.org/10.1016/j.elecom.2008.10.011

    Article  CAS  Google Scholar 

  51. Ahn SH, Park H-Y, Choi I, Yoo SJ, Hwang SJ, Kim H-J, Cho EA, Yoon CW, Park H, Son H, Hernandez JM, Nam SW, Lim T-H, Kim S-K, Jang JH (2013) Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis. Int J Hydrogen Energy 38(31):13493–13501. https://doi.org/10.1016/j.ijhydene.2013.07.103

    Article  CAS  Google Scholar 

  52. Nady H, Negem M (2016) Ni-Cu nano-crystalline alloys for efficient electrochemical hydrogen production in acid water. RSC Adv 6:51111–51119. https://doi.org/10.1039/C6RA08348J

    Article  CAS  Google Scholar 

  53. Solmaz R, Döner A, Kardaş G (2010) Preparation, characterization and application of alkaline leached CuNiZn ternary coatings for long-term electrolysis in alkaline solution. Int J Hydrogen Energy 35(19):10045–10049. https://doi.org/10.1016/j.ijhydene.2010.07.145

    Article  CAS  Google Scholar 

  54. Milhano C, Pletcher D (2008) The electrodeposition and electrocatalytic properties of copper-palladium alloys. J Electroanal Chem 614(1–2):24–30. https://doi.org/10.1016/j.jelechem.2007.11.001

    Article  CAS  Google Scholar 

  55. Gao W, Gao L, Li D, Huang K, Cui L, Meng J, Liang J (2018) Removal of nitrate from water by the electrocatalytic denitrification on the Cu-Bi electrode. J Electroanal Chem 817:202–209. https://doi.org/10.1016/j.jelechem.2018.04.006

    Article  CAS  Google Scholar 

  56. Qiu Y-L, Zhong H-X, Zhang T-T, Xu W-B, Li X-F, Zhang H-M (2017) Copper electrode fabricated via Pulse electrodeposition: toward high methane selectivity and activity for CO2 electroreduction. ACS Catal 7(9):6302–6310. https://doi.org/10.1021/acscatal.7b00571

    Article  CAS  Google Scholar 

  57. Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem Interfacial Electrochem 39(1):163–184. https://doi.org/10.1016/S0022-0728(72)80485-6

  58. Saldan I, Dobrovetska O, Sus L, Makota O, Pereviznyk O, Kuntyi O, Reshetnyak O (2018) Electrochemical synthesis and properties of gold nanomaterials. J Solid State Electrochem 22:637–656. https://doi.org/10.1007/s10008-017-3835-5

    Article  CAS  Google Scholar 

  59. Seo B, Choi S, Kim J (2011) Simple electrochemical deposition of Au nanoplates from Au(I) cyanide complexes and their electrocatalytic activities. ACS Appl Mater Interfaces 3(2):441–446. https://doi.org/10.1021/am101018g

    Article  CAS  Google Scholar 

  60. Ye W, Yan J, Ye Q, Zhou F (2010) Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications. J Phys Chem C 114(37):15617–15624. https://doi.org/10.1021/jp105929b

    Article  CAS  Google Scholar 

  61. Ye W, Kou H, Liu Q, Yan J, Zhou F, Wang C (2012) Electrochemical deposition of Au-Pt alloy particles with cauliflower-like microstructures for electrocatalytic methanol oxidation. Int J Hydrogen Energy 37(5):4088–4097. https://doi.org/10.1016/j.ijhydene.2011.11.132

    Article  CAS  Google Scholar 

  62. Song Y, Ma Y, Wang Y, Di J, Tu Y (2010) Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications. Electrochim Acta 55(17):4909–4914. https://doi.org/10.1016/j.electacta.2010.03.089

    Article  CAS  Google Scholar 

  63. Dobrovetska O, Kuntyi O, Saldan I, Korniy S, Okhremchuk Y, Reshetnyak O (2015) Nanostructured gold–palladium electrodeposited in dimethylsulfoxide solutions. Mater Lett 158:317–321. https://doi.org/10.1016/j.matlet.2015.06.041

    Article  CAS  Google Scholar 

  64. Feltham AM, Spiro M (1971) Platinized platinum electrodes. Chem Rev 71(2):177–193. https://doi.org/10.1021/cr60270a002

    Article  CAS  Google Scholar 

  65. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804. https://doi.org/10.1021/cr9003902

    Article  CAS  Google Scholar 

  66. Rao CRK, Trivedi DC (2005) Chemical and electrochemical depositions of platinum group metals and their applications. Coord Chem Rev 249:613–631. https://doi.org/10.1016/j.ccr.2004.08.015

    Article  CAS  Google Scholar 

  67. Mathe MK, Mkwizu T, Modibedi M (2012) Electrocatalysis research for fuel cells and hydrogen production. Energy Procedia 29:401–408. https://doi.org/10.1016/j.egypro.2012.09.047

    Article  Google Scholar 

  68. Singh RN, Awasthi R, Sharma CS (2014) Review: an overview of recent development of platinum-based cathode materials for direct methanol fuel cells. Int J Electrochem Sci 9:5607–5639. http://www.electrochemsci.org/papers/vol9/91005607.pdf

  69. Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C (2017) A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A 5(5):1808–1825. https://doi.org/10.1039/c6ta08580f

    Article  CAS  Google Scholar 

  70. Muthukumar V, Chetty R (2017) Morphological transformation of electrodeposited Pt and its electrocatalytic activity towards direct formic acid fuel cells. J Appl Electrochem 47(6):735–745. https://doi.org/10.1007/s10800-017-1076-z

    Article  CAS  Google Scholar 

  71. Zhong C, Hu WB, Cheng YF (2011) On the essential role of current density in electrocatalytic activity of the electrodeposited platinum for oxidation of ammonia. J Power Sources 196:8064–8072. https://doi.org/10.1016/j.jpowsour.2011.05.058

    Article  CAS  Google Scholar 

  72. Bertin E, Garbarino S, Guay D, Solla-Gullón J, Vidal-Iglesias FJ, Feliu JM (2013) Electrodeposited platinum thin films with preferential (100) orientation: characterization and electrocatalytic properties for ammonia and formic acid oxidation. J Power Sources 225:323–329. https://doi.org/10.1016/j.jpowsour.2012.09.090

    Article  CAS  Google Scholar 

  73. Geboes B, Ustarroz J, Sentosun K, Vanrompay H, Hubin A, Bals S, Breugelmans T (2016) Electrochemical behavior of electrodeposited nanoporous Pt catalysts for the oxygen reduction reaction. ACS Catal 6:5856–5864. https://doi.org/10.1021/acscatal.6b00668

    Article  CAS  Google Scholar 

  74. Ustarroz J, Geboes B, Vanrompay H, Sentosun K, Bals S, Breugelmans T, Hubin A (2017) Electrodeposition of highly porous Pt nanoparticles studied by quantitative 3D electron tomography: influence of growth mechanisms and potential cycling on the active surface area. ACS Appl Mater Interfaces 9:16168–16177. https://doi.org/10.1021/acsami.7b01619

    Article  CAS  Google Scholar 

  75. Doan N, Figueiredo MC, Johans C, Kallio T (2016) Electrodeposited mesoporous Pt for direct ethanol fuel cells anodes. Int J Electrochem Sci 11:7631–7643. http://dx.doi.org/10.20964/2016.09.06

  76. Liu J, Wang X, Lin Z, Cao Y, Zheng ZZ, Zeng Z, Hu Z (2014) Shape-controllable pulse electrodeposition of ultrafine platinum nanodendrites for methanol catalytic combustion and the investigation of their local electric field intensification by electrostatic force microscope and finite element method. Electrochim Acta 136:66–74. https://doi.org/10.1016/j.electacta.2014.05.082

    Article  CAS  Google Scholar 

  77. Ye F, Li J, Wang T, Liu Y, Wei H, Li J, Wang X (2008) Electrocatalytic properties of platinum catalysts prepared by pulse electrodeposition method using SnO2 as an assisting reagent. J Phys Chem C 112:12894–12898. https://doi.org/10.1021/jp803188s

    Article  CAS  Google Scholar 

  78. Tiwari JN, Pan FM, Lin KL (2009) Facile approach to the synthesis of 3D platinum nanoflowers and their electrochemical characteristics. New J Chem 33:1482–1485. https://doi.org/10.1039/b901534p

    Article  CAS  Google Scholar 

  79. Zhou M, Dick JE, Bard AJ (2017) Electrodeposition of isolated platinum atoms and clusters on bismuth—characterization and electrocatalysis. J Am Chem Soc 139(48):17677–17682. https://doi.org/10.1021/jacs.7b10646

    Article  CAS  Google Scholar 

  80. Lertanantawong B, Surareungchai W, O’Mullane AP (2016) Utilising solution dispersed platinum nanoparticles to direct the growth of electrodeposited platinum nanostructures and its influence on the electrocatalytic oxidation of small organic molecules. J Electroanal Chem 779:99–105. https://doi.org/10.1016/j.jelechem.2016.04.030

    Article  CAS  Google Scholar 

  81. Kasian OI, Luk’yanenko TV, Demchenko P, Gladyshevskii RE, Amadelli R, Velichenko AB (2013) Electrochemical properties of thermally treated platinized Ebonex® with low content of Pt. Electrochim Acta 109:630–637. https://doi.org/10.1016/j.electacta.2013.07.162

    Article  CAS  Google Scholar 

  82. Kasian O, Luk’yanenko T, Velichenko A, Amadelli R (2012) Electrochemical behavior of platinized Ebonex® electrodes. Int J Electrochem Sci 7:7915–7926. http://www.electrochemsci.org/papers/vol7/7097915.pdf

  83. He P, Liu H, Li Z, Li J (2005) Electrodeposition of platinum in room-temperature ionic liquids and electrocatalytic effect on electro-oxidation of methanol. J Electrochem Soc 152(4):E146–E153. https://doi.org/10.1149/1.1870754

    Article  CAS  Google Scholar 

  84. Yao K, Cheng YF (2007) Electrodeposited Ni–Pt binary alloys as electrocatalysts for oxidation of ammonia. J Power Sources 173:96–101. https://doi.org/10.1016/j.jpowsour.2007.04.081

    Article  CAS  Google Scholar 

  85. Woo S, Kim I, Lee JK, Bong S, Lee J, Kim H (2011) Preparation of cost-effective Pt–Co electrodes by pulse electrodeposition for PEMFC electrocatalysts. Electrochim Acta 56:3036–3041. https://doi.org/10.1016/j.electacta.2011.01.002

    Article  CAS  Google Scholar 

  86. Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C (2011) Bimetallic Pt–Au nanocatalysts electrochemically deposited on grapheme and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Phys Chem Chem Phys 13:4083–4094. https://doi.org/10.1039/c0cp01998d

    Article  CAS  Google Scholar 

  87. Mkwizu TS, Mathe MK, Cukrowski I (2013) Multilayered nanoclusters of platinum and gold: insights on electrodeposition pathways, electrocatalysis, surface and bulk compositional properties. J Electrochem Soc 160(9):H529–H546. https://doi.org/10.1149/2.018309jes

    Article  CAS  Google Scholar 

  88. Jow JJ, Yang SW, Chen HR, Wu MS, Ling TR, Wei TY (2009) Co-electrodeposition of Pt–Ru electrocatalysts in electrolytes with varying compositions by a double-potential pulse method for the oxidation of MeOH and CO. Int J Hydrogen Energy 34:665–671. https://doi.org/10.1016/j.ijhydene.2008.11.032

    Article  CAS  Google Scholar 

  89. Ureta-Zañartu MS, Yáñez C, Reyes G, Gancedo JR, Marco JF (1998) Electrodeposited Pt–Ir electrodes: characterization and electrocatalytic activity for the reduction of the nitrate ion. J Solid State Electrochem 2:191–197. https://doi.org/10.1007/s100080050086

    Article  Google Scholar 

  90. Venarusso LB, Sato RH, Fiorito PA, Maia G (2013) Platinum systems electrodeposited in the presence of iron or palladium on a sold surface effectively catalyze oxygen reduction reaction. J Phys Chem C 117(15):7540–7551. https://doi.org/10.1021/jp311343w

    Article  CAS  Google Scholar 

  91. Hwang SJ, Yoo SJ, Jang S, Lim TH, Hong SA, Kim SK (2011) Ternary Pt–Fe–Co alloy electrocatalysts prepared by electrodeposition: elucidating the roles of Fe and Co in the oxygen reduction reaction. J Phys Chem C 115:2483–2488. https://doi.org/10.1021/jp106947q

    Article  CAS  Google Scholar 

  92. Papaderakis A, Pliatsikas N, Prochaska C, Papazisi KM, Balomenou SP, Tsiplakides D, Patsalas P, Sotiropoulos S (2014) Ternary Pt–Ru–Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement. Front Chem 2:29. https://doi.org/10.3389/fchem.2014.00029

    Article  CAS  Google Scholar 

  93. Liu H, He P, Li Z, Li J (2006) High surface area nanoporous platinum: facile fabrication and electrocatalytic activity. Nanotechnology 17:2167–2173. https://doi.org/10.1088/0957-4484/17/9/015

    Article  CAS  Google Scholar 

  94. Kibler LA, Soliman KA, Plumer A, Wildi CS, Bringley E, Mueller JE, Jacob T (2017) Electrodeposition of Ag overlayers onto Pt(111): structural, electrochemical and electrocatalytic properties. Electrocatalysis 8(6):605–615. https://doi.org/10.1007/s12678-017-0386-6

    Article  CAS  Google Scholar 

  95. Shim JH, Kim YS, Kang M, Lee C, Lee Y (2012) Electrocatalytic activity of nanoporous Pd and Pt: effect of structural features. Phys Chem Chem Phys 14:3974–3979. https://doi.org/10.1039/c2cp23429g

    Article  CAS  Google Scholar 

  96. Maniam KK, Chetty R (2013) Electrodeposited palladium nanoflowers for electrocatalytic applications. Fuel Cells 13(6):1196–1204. https://doi.org/10.1002/fuce.201200162

    Article  CAS  Google Scholar 

  97. Hong YH, Tsai YC (2009) Electrodeposition of platinum and ruthenium nanoparticles in multiwalled carbon nanotube-Nafion nanocomposite for methanol electrooxidation. J Nanomater 2009:892178. https://doi.org/10.1155/2009/892178

    Article  CAS  Google Scholar 

  98. Zulke AA, Matos R, Pereira EC (2013) Metallic multilayered films electrodeposited over titanium as catalysts for methanol electro-oxidation. Electrochim Acta 105:578–583. https://doi.org/10.1016/j.electacta.2013.05.027

    Article  CAS  Google Scholar 

  99. Zhang B, Ye D, Li J, Zhu X, Liao Q (2012) Electrodeposition of Pd catalyst layer on graphite rod electrodes for direct formic acid oxidation. J Power Sour 214:277–284. https://doi.org/10.1016/j.jpowsour.2012.04.007

    Article  CAS  Google Scholar 

  100. Maillard F, Gloaguen F, Leger JM (2003) Preparation of methanol oxidation electrocatalysts: ruthenium deposition on carbon-supported platinum nanoparticles. J Appl Electrochem 33(1):1–8. https://doi.org/10.1023/a:1022906615060

    Article  CAS  Google Scholar 

  101. Espino-López IE, Romero-Romo M, Montes de Oca-Yemha MG, Morales-Gil P, Ramírez-Silva MT, Mostany J, Palomar-Pardavé M (2019) Palladium nanoparticles electrodeposition onto glassy carbon from a deep eutectic solvent at 298 K and their catalytic performance toward formic acid oxidation. J Electrochem Soc 166(1):D3205–D3211. https://doi.org/10.1149/2.0251901jes

    Article  CAS  Google Scholar 

  102. Vykhodtseva LN, Kulakova II, Safonov VA (2008) Electrocatalytic formation of polymolecular products at the cathodic polarization of polycrystalline chromium in sulfuric acid solutions of formic and oxalic acids. Russ J Electrochem 44(8):877–883. https://doi.org/10.1134/S1023193508080016

    Article  CAS  Google Scholar 

  103. Safonov VA, Vykhodtseva LN, Polukarov YM, Safonova OV, Smolentsev G, Sikora M, Eeckhout SG, Glatzel P (2006) Valence-to-core X-ray emission spectroscopy identification of carbide compounds in nanocrystalline Cr coatings deposited from Cr(III) electrolytes containing organic substances. J Phys Chem B 110(46):23192–23196. https://doi.org/10.1021/jp064569j

    Article  CAS  Google Scholar 

  104. Protsenko VS, Gordiienko VO, Danilov FI (2012) Unusual “chemical” mechanism of carbon co-deposition in Cr-C alloy electrodeposition process from trivalent chromium bath. Electrochem Commun 17:85–87. https://doi.org/10.1016/j.elecom.2012.02.013

    Article  CAS  Google Scholar 

  105. Danilov FI, Protsenko VS, Gordiienko VO (2013) Electrode processes occurring during the electrodeposition of chromium–carbon coatings from solutions of Cr(III) salts with carbamide and formic acid additions. Russ J Electrochem 49(5):475–482. https://doi.org/10.1134/S1023193513050054

    Article  CAS  Google Scholar 

  106. Schmuecker SM, Clouser D, Kraus TJ, Leonard BM (2017) Synthesis of metastable chromium carbide nanomaterials and their electrocatalytic activity for the hydrogen evolution reaction. Dalton Trans 46:13524–13530. https://doi.org/10.1039/c7dt01404j

    Article  CAS  Google Scholar 

  107. Tomás-García AL, Jensen JO, Bjerrum NJ, Li Q (2014) Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid. Electrochim Acta 137:639–646. https://doi.org/10.1016/j.electacta.2014.06.087

    Article  CAS  Google Scholar 

  108. Tsirlina GA, Petrii OA (1987) Hydrogen evolution on smooth stoichiometric tungsten and chromium carbides. Electrochim Acta 32:649–657. https://doi.org/10.1016/0013-4686(87)87056-1

    Article  CAS  Google Scholar 

  109. Safonova OV, Vykhodtseva LN, Polyakov NA, Swarbrick JC, Sikora M, Glatzel P, Safonov VA (2010) Chemical composition and structural transformations of amorphous chromium coatings electrodeposited from Cr(III) electrolytes. Electrochim Acta 56:145–153. https://doi.org/10.1016/j.electacta.2010.08.108

    Article  CAS  Google Scholar 

  110. Protsenko VS, Danilov FI, Gordiienko VO, Baskevich AS, Artemchuk VV (2012) Improving hardness and tribological characteristics of nanocrystalline Cr-C films obtained from Cr(III) plating bath using pulsed electrodeposition. Int J Refract Met Hard Mater 31:281–283. https://doi.org/10.1016/j.ijrmhm.2011.10.006

    Article  CAS  Google Scholar 

  111. Danilov FI, Protsenko VS, Gordiienko VO, Baskevich AS, Artemchuk VV (2012) Electrodeposition of nanocrystalline chromium-carbon alloys from electrolyte based on trivalent chromium sulfate using pulsed current. Prot Met Phys Chem Surf 48:328–333. https://doi.org/10.1134/S2070205112030057

    Article  CAS  Google Scholar 

  112. Protsenko VS, Gordiienko VO, Danilov FI, Kwon SC, Kim M, Lee JY (2011) Unusually high current efficiency of nanocrystalline Cr electrodeposition process from trivalent chromium bath. Surf Eng 27(9):690–692. https://doi.org/10.1179/1743294410Y.0000000019

    Article  CAS  Google Scholar 

  113. Surviliené S, Nivinskiené O, Češuniené A, Selskis A (2006) Effect of Cr(III) solution chemistry on electrodeposition of chromium. J Appl Electrochem 36:649–654. https://doi.org/10.1007/s10800-005-9105-8

    Article  CAS  Google Scholar 

  114. Protsenko VS, Danilov FI (2014) Chromium electroplating from trivalent chromium baths as an environmentally friendly alternative to hazardous hexavalent chromium baths: comparative study on advantages and disadvantages. Clean Techn Environ Policy 16(6):1201–1206. https://doi.org/10.1007/s10098-014-0711-1

    Article  CAS  Google Scholar 

  115. Abbott AP, Al-Barzinjy AA, Abbott PD, Frish G, Harris RC, Hartley J, Ryder KS (2014) Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3·6H2O and urea. Phys Chem Chem Phys 16:9047–9055. https://doi.org/10.1039/C4CP00057A

    Article  CAS  Google Scholar 

  116. Ferreira ESC, Pereira CM, Silva AF (2013) Electrochemical studies of metallic chromium electrodeposition from a Cr(III) bath. J Electroanal Chem 707:52–58. https://doi.org/10.1016/j.jelechem.2013.08.005

    Article  CAS  Google Scholar 

  117. McCalman DC, Sun L, Zhang Y, Brennecke JF, Maginn EJ, Schneider WF (2015) Speciation, conductivities, diffusivities, and electrochemical reduction as a function of water content in mixtures of hydrated chromium chloride/choline chloride. J Phys Chem B 119:6018–6023. https://doi.org/10.1021/acs.jpcb.5b01986

    Article  CAS  Google Scholar 

  118. Bobrova LS, Danilov FI, Protsenko VS (2016) Effects of temperature and water content on physicochemical properties of ionic liquids containing CrCl3·xH2O and choline chloride. J Mol Liq 223:48–53. https://doi.org/10.1016/j.molliq.2016.08.027

    Article  CAS  Google Scholar 

  119. Protsenko VS, Bobrova LS, Danilov FI (2017) Physicochemical properties of ionic liquid mixtures containing choline chloride, chromium (III) chloride and water: effects of temperature and water content. Ionics 23:637–643. https://doi.org/10.1007/s11581-016-1826-7

    Article  CAS  Google Scholar 

  120. Protsenko V, Bobrova L, Danilov F (2018) Trivalent chromium electrodeposition using a deep eutectic solvent. Anti-Corros Methods Mater 65:499–505. https://doi.org/10.1108/ACMM-05-2018-1946

    Article  CAS  Google Scholar 

  121. Protsenko VS, Bobrova LS, Korniy SA, Kityk AA, Danilov FI (2018) Corrosion resistance and protective properties of chromium coatings electrodeposited from an electrolyte based on deep eutectic solvent. Funct Mater 25(3):539–545. https://doi.org/10.15407/fm25.03.539

  122. Protsenko VS, Bobrova LS, Butyrina TE, Danilov FI (2019) Hydrogen evolution reaction on Cr–C electrocatalysts electrodeposited from a choline chloride based trivalent chromium plating bath. Voprosy Khimii i Khimicheskoi Tekhnologii (1):61–66. https://doi.org/10.32434/0321-4095-2019-122-1-61-66

  123. Boiadjieva-Scherzer T, Kronberger H, Fafilek G, Monev M (2016) Hydrogen evolution reaction on electrodeposited Zn–Cr alloy coatings. J Electroanal Chem 783:68–75. https://doi.org/10.1016/j.jelechem.2016.10.059

    Article  CAS  Google Scholar 

  124. Low CTJ, Wills RGA, Walsh FC (2006) Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol 201:371–383. https://doi.org/10.1016/j.surfcoat.2005.11.123

    Article  CAS  Google Scholar 

  125. Walsh FC, Ponce de Leon C (2014) A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology. Trans Inst Met Finish 92:83–98. https://doi.org/10.1179/0020296713Z.000000000161

    Article  CAS  Google Scholar 

  126. Mirkova L, Monev M, Petkova N (2009) Hydrogen evolution, diffusion and solution in Ni/based composite electrodeposits. ECS Trans 19(10):105–112. https://doi.org/10.1149/1.3237112

    Article  CAS  Google Scholar 

  127. Abdel Aal A, Hassan HB (2009) Electrodeposited nanocomposite coatings for fuel cell application. J Alloys Compd 477:652–656. https://doi.org/10.1016/j.jallcom.2008.10.116

    Article  CAS  Google Scholar 

  128. Gierlotka D, Rówiński E, Budniok A, Łagiewka E (1997) Production and properties of electrolytic Ni–P–TiO2 composite layers. J Appl Electrochem 27:1349–1354. https://doi.org/10.1023/A:1018416927715

    Article  CAS  Google Scholar 

  129. Kullaiah R, Elias L, Hegde AC (2018) Effect of TiO2 nanoparticles on hydrogen evolution reaction activity of Ni coatings. Int J Miner Metall Mater 25(4):472–479. https://doi.org/10.1007/s12613-018-1593-8

    Article  CAS  Google Scholar 

  130. Shibli SMA, Dilimon VS (2007) Effect of phosphorous content and TiO2-reinforcement on Ni–P electroless plates for hydrogen evolution reaction. Int J Hydrogen Energy 32:1694–1700. https://doi.org/10.1016/j.ijhydene.2006.11.037

    Article  CAS  Google Scholar 

  131. Shibli SMA, Dilimon VS (2008) Development of TiO2-supported nano-RuO2-incorporated catalytic nickel coating for hydrogen evolution reaction. Int J Hydrogen Energy 33:1104–1111. https://doi.org/10.1016/j.ijhydene.2007.12.038

    Article  CAS  Google Scholar 

  132. Danilov FI, Tsurkan AV, Vasil’eva EA, Protsenko VS (2016) Electrocatalytic activity of composite Fe/TiO2 electrodeposits for hydrogen evolution reaction in alkaline solutions. Int J Hydrogen Energy 41:7363–7372. https://doi.org/10.1016/j.ijhydene.2016.02.112

    Article  CAS  Google Scholar 

  133. Protsenko VS, Tsurkan AV, Vasil’eva EA, Baskevich AS, Korniy SA, Cheipesh TO, Danilov FI (2018) Fabrication and characterization of multifunctional Fe/TiO2 composite coatings. Mater Res Bull 100:32–41. https://doi.org/10.1016/j.materresbull.2017.11.051

    Article  CAS  Google Scholar 

  134. Protsenko VS, Vasil’eva EA, Tsurkan AV, Kityk AA, Korniy SA, Danilov FI (2017) Fe/TiO2 composite coatings modified by ceria layer: Electrochemical synthesis using environmentally friendly methanesulfonate electrolytes and application as photocatalysts for organic dyes degradation. J Environ Chem Eng 5:136–146. https://doi.org/10.1016/j.jece.2016.11.034

    Article  CAS  Google Scholar 

  135. Vasil’eva EA, Tsurkan AV, Protsenko VS, Danilov FI (2016) Electrodeposition of composite Fe–TiO2 coatings from methanesulfonate electrolyte. Prot Met Phys Chem Surf 52:532–537. https://doi.org/10.1134/S2070205116030278

    Article  CAS  Google Scholar 

  136. Protsenko VS, Vasil’eva EA, Smenova IV, Danilov FI (2014) Electrodeposition of iron/titania composite coatings from methanesulfonate electrolyte. Russ J Appl Chem 87:283–288. https://doi.org/10.1134/S1070427214030069

    Article  CAS  Google Scholar 

  137. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. https://doi.org/10.1021/cr0500535

    Article  CAS  Google Scholar 

  138. Gernon MD, Wu M, Buszta T, Janney P (1999) Environmental benefits of methanesulfonic acid: Comparative properties and advantages. Green Chem 1:127–140. https://doi.org/10.1039/a900157c

    Article  CAS  Google Scholar 

  139. Walsh FC, Ponce de León C (2014) Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid. Surf Coat Technol 259:676–697. https://doi.org/10.1016/j.surfcoat.2014.10.010

    Article  CAS  Google Scholar 

  140. Cai C, Zhu XB, Zheng GQ, Yuan YN, Huang XQ, Cao FH, Yang JF, Zhang Z (2011) Electrodeposition and characterization of nano-structured Ni–SiC composite films. Surf Coat Technol 205:3448–3454. https://doi.org/10.1016/j.surfcoat.2010.12.002

    Article  CAS  Google Scholar 

  141. Mirkova L, Pashova V, Monev M (2011) Study of hydrogen evolution reaction on Ni/Co3O4 composite electrode in alkaline solution. ECS Trans 35(21):77–84. https://doi.org/10.1149/1.3641467

    Article  CAS  Google Scholar 

  142. Wang L, Li Y, Yin X, Wang Y, Song A, Ma Z, Qin X, Shao G (2017) Coral-like-structured Ni/C3N4 composite coating: an active electrocatalyst for hydrogen evolution reaction in alkaline solution. ACS Sustain Chem Eng 5:7993–8003. https://doi.org/10.1021/acssuschemeng.7b01576

    Article  CAS  Google Scholar 

  143. Wang L, Li Y, Yin X, Wang Y, Lu L, Song A, Xia M, Li Z, Qin X, Shao G (2017) Comparison of three nickel-based carbon composite catalysts for hydrogen evolution reaction in alkaline solution. Int J Hydrogen Energy 42:22655–22662. https://doi.org/10.1016/j.ijhydene.2017.06.215

    Article  CAS  Google Scholar 

  144. Elias L, Hegde AC (2017) Effect of including the carbon nanotube and graphene oxide on the electrocatalytic behavior of the Ni–W alloy for the hydrogen evolution reaction. New J Chem 41:13912–13917. https://doi.org/10.1039/C7NJ02722B

    Article  CAS  Google Scholar 

  145. Wang S, Li W, Qin H, Liu L, Chen Y, Xiang D (2019) Electrodeposition of Ni-Fe-Co-graphene composite coatings and their electrocatalytic activity for hydrogen evolution reaction. Int J Electrochem Sci 14:957–969. http://dx.doi.org/10.20964/2019.01.73

  146. Elias L, Hegde AC (2018) Electrolytic synthesis of Ni-W-MWCNT composite coating for alkaline hydrogen evolution reaction. J Mater Eng Perform 27(3):1033–1039. https://doi.org/10.1007/s11665-018-3134-z

    Article  CAS  Google Scholar 

  147. Wu G, Li N, Dai CS, Zhou DR (2004) Electrochemical preparation and characteristics of Ni–Co–LaNi5 composite coatings as electrode materials for hydrogen evolution. Mater Chem Phys 83:307–314. https://doi.org/10.1016/j.matchemphys.2003.10.005

    Article  CAS  Google Scholar 

  148. Chen Z, Shao G, Ma Z, Song J, Wang G, Huang W (2015) Preparation of Ni–CeO2 composite coatings with high catalytic activity for hydrogen evolution reaction. Mater Lett 160:34–37. https://doi.org/10.1016/j.matlet.2015.07.081

    Article  CAS  Google Scholar 

  149. Zhang K, Li J, Liu W, Liu J, Yan C (2016) Electrocatalytic activity and electrochemical stability of Ni–S/CeO2 composite electrode for hydrogen evolution in alkaline water electrolysis. Int J Hydrogen Energy 41:22643–22651. https://doi.org/10.1016/j.ijhydene.2016.08.229

    Article  CAS  Google Scholar 

  150. Sheng M, Weng W, Wang Y, Wu Q, Hou S (2018) Co–W/CeO2 composite coatings for highly active electrocatalysis of hydrogen evolution reaction. J Alloys Compd 743:682–690. https://doi.org/10.1016/j.jallcom.2018.01.356

    Article  CAS  Google Scholar 

  151. Yang YJ, Hu S (2010) Electrodeposited MnO2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxide. Electrochim Acta 55:3471–3476. https://doi.org/10.1016/j.electacta.2010.01.095

    Article  CAS  Google Scholar 

  152. Miao HJ, Piron DL (1993) Composite-coating electrodes for hydrogen evolution reaction. Electrochim Acta 38(8):1079–1085. https://doi.org/10.1016/0013-4686(93)80216-M

    Article  CAS  Google Scholar 

  153. Elias L, Hegde AC (2016) Synthesis and characterization of Ni–P–Ag composite coating as efficient electrocatalyst for alkaline hydrogen evolution reaction. Electrochim Acta 219:377–385. https://doi.org/10.1016/j.electacta.2016.10.024

    Article  CAS  Google Scholar 

  154. Tu WY, Xu BS, Dong SY, Wang HD (2006) Electrocatalytic action of nano-SiO2 with electrodeposited nickel matrix. Mater Lett 60:1247–1250. https://doi.org/10.1016/j.matlet.2005.11.008

    Article  CAS  Google Scholar 

  155. Tu WY, Xu BS, Dong SY, Wang HD, Bin J (2008) Chemical and electrocatalytical interaction: influence of non-electroactive ceramic nanoparticles on nickel electrodeposition and composite coating. J Mater Sci 43:1102–1108. https://doi.org/10.1007/s10853-007-2259-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Protsenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Protsenko, V.S., Danilov, F.I. (2020). Current Trends in Electrodeposition of Electrocatalytic Coatings. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_11

Download citation

Publish with us

Policies and ethics