Skip to main content
Log in

Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nickel–tungsten multi-walled carbon nanotube (Ni-W-MWCNT) composite films were fabricated by an electrodeposition technique, and their electrocatalytic activity toward hydrogen evolution reaction (HER) was studied. Ni-W-MWCNT composite films with a homogeneous dispersion of MWCNTs were deposited from an optimal Ni-W plating bath containing functionalized MWCNTs, under galvanostatic condition. The presence of functionalized MWCNT was found to enhance the induced codeposition of the reluctant metal W and resulted in a W-rich composite coating with improved properties. The electrocatalytic behaviors of Ni-W-MWCNT composite coating toward HER were studied by cyclic voltammetry (CV) and chronopotentiometry techniques in 1.0 M KOH medium. Further, Tafel polarization and electrochemical impedance spectroscopy (EIS) studies were carried out to establish the kinetics of HER on the alloy and composite electrodes. The experimental results revealed that the addition of MWCNTs (having a diameter of around 10-15 nm) into the alloy plating bath has a significant effect on the electrocatalytic behavior of Ni-W alloy deposit. The Ni-W-MWCNT composite coating was found to show better HER activity than the conventional Ni-W alloy coating. The enhanced electrocatalytic activity of Ni-W-MWCNT composite coating is attributed to the MWCNT intersticed in the deposit matrix, evidenced by surface morphology, composition and phase structure of the coating through SEM, EDS and XRD analyses, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.A. Turner, A realizable Renewable Energy Future, Science, 1999, 285, p 687–689

    Article  Google Scholar 

  2. C. Wu, J. Li, D. Zhang, B. Yang, L. Li, T. Zhou, C. Zhang, G. Yang, and Y. Shan, Electrospun Transition/Alkaline Earth Metal Oxide Composite Nanofibers Under Mild Condition for Hydrogen Evolution Reaction, Int. J. Hydrogen Energy, 2016, 41, p 13915–13922. https://doi.org/10.1016/j.ijhydene.2016.07.017

    Article  Google Scholar 

  3. S. Gupta, N. Patel, R. Fernandes, R. Kadrekar, A. Dashora, A.K. Yadav, D. Bhattacharyya, S.N. Jha, A. Miotello, and D.C. Kothari, Co-Ni-B Nanocatalyst for Efficient Hydrogen Evolution Reaction in Wide pH Range, Appl. Catal. B, 2016, 192, p 126–133. https://doi.org/10.1016/j.apcatb.2016.03.032

    Article  Google Scholar 

  4. J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He, and A.M. Asiri, Self-Supported NiMo Hollow Nanorod Array: An Efficient 3D Bifunctional Catalytic Electrode for Overall Water Splitting, J. Mater. Chem. A., 2015, 3, p 20056–20059

    Article  Google Scholar 

  5. Z. Chen, M. Qin, P. Chen, B. Jia, Q. He, and X. Qu, Tungsten Carbide/Carbon Composite Synthesized by Combustion-Carbothermal Reduction Method as Electrocatalyst for Hydrogen Evolution Reaction, Int. J. Hydrogen Energy, 2016, 41, p 13005–13013. https://doi.org/10.1016/j.ijhydene.2016.06.063

    Article  Google Scholar 

  6. T.-Y. Chen, Y.-H. Chang, C.-L. Hsu, K.-H. Wei, C.-Y. Chiang, and L.-J. Li, Comparative Study on MoS2 and WS2 for Electrocatalytic Water Splitting, Int. J. Hydrogen Energy, 2013, 38, p 12302–12309

    Article  Google Scholar 

  7. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, and S.Z. Qiao, Hydrogen Evolution by a Metal-Free Electrocatalyst, Nat. Commun., 2014, 5, p 3783

    Google Scholar 

  8. K. Zeng and D. Zhang, Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications, Prog. Energy Combust. Sci., 2010, 36, p 307–326

    Article  Google Scholar 

  9. F.M. Toma, A. Sartorel, M. Iurlo, M. Carraro, S. Rapino, L. Hoober-Burkhardt, T. Da Ros, M. Marcaccio, G. Scorrano, F. Paolucci et al., Tailored Functionalization of Carbon Nanotubes for Electrocatalytic Water Splitting and Sustainable Energy Applications, Chem. Sustain. Chem., 2011, 4, p 1447–1451

    Article  Google Scholar 

  10. J.A. Turner, Sustainable Hydrogen Production, Science, 2004, 305, p 972–974. https://doi.org/10.1126/science.1103197

    Article  Google Scholar 

  11. R.B. Levy and M. Boudart, Platinum-like Behavior of Tungsten Carbide in Surface Catalysis, Science, 1973, 181, p 547–549

    Article  Google Scholar 

  12. Y.-R. Liu, W.-H. Hu, X. Li, B. Dong, X. Shang, G.-Q. Han, Y.-M. Chai, Y.-Q. Liu, and C.-G. Liu, Facile One-Pot Synthesis of CoS2-MoS2/CNTs as Efficient Electrocatalyst for Hydrogen Evolution Reaction, Appl. Surf. Sci., 2016, 384, p 51–57. https://doi.org/10.1016/j.apsusc.2016.05.007

    Article  Google Scholar 

  13. Z. Liu, M. Li, F. Wang, and Q.-D. Wang, Novel As-Doped, As and N-Codoped Carbon Nanotubes as Highly Active and Durable Electrocatalysts for O2 Reduction in Alkaline Medium, J. Power Sources, 2016, 306, p 535–540. https://doi.org/10.1016/j.jpowsour.2015.12.053

    Article  Google Scholar 

  14. W. Yuan, J. Zhang, P.K. Shen, C.M. Li, and S.P. Jiang, Self-Assembled CeO2 on Carbon Nanotubes Supported Au Nanoclusters As Superior Electrocatalysts for Glycerol Oxidation Reaction of Fuel Cells, Electrochim. Acta, 2016, 190, p 817–828. https://doi.org/10.1016/j.electacta.2015.12.152

    Article  Google Scholar 

  15. H. Ghanbarlou, S. Rowshanzamir, M.J. Parnian, and F. Mehri, Comparison of Nitrogen-Doped Graphene and Carbon Nanotubes as Supporting Material for Iron and Cobalt Nanoparticle Electrocatalysts Toward Oxygen Reduction Reaction in Alkaline Media for Fuel Cell Applications, Int. J. Hydrogen Energy, 2016, 41, p 14665–14675. https://doi.org/10.1016/j.ijhydene.2016.06.005

    Article  Google Scholar 

  16. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354, p 56–58. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  17. S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites-a Review, Int. Mater. Rev., 2010, 55, p 41–64

    Article  Google Scholar 

  18. Y. Wang, M. Deng, X. Cui, H. Wu, L. Zhu, and G. Ding, Research and Application of CNT Composite Electroplating, in Carbon Nanotubes—From Research to Applications, InTech, 2011

  19. S. Arai, A. Fujimori, M. Murai, and M. Endo, Excellent Solid Lubrication of Electrodeposited Nickel-Multiwalled Carbon Nanotube Composite Films, Mater. Lett., 2008, 62, p 3545–3548

    Article  Google Scholar 

  20. M. Deng, G. Ding, Y. Wang, H. Wu, Y. Yao, and L. Zhu, Fabrication of Ni-Matrix Carbon Nanotube Field Emitters Using Composite Electroplating and Micromachining, Carbon, 2009, 47, p 3466–3471

    Article  Google Scholar 

  21. H. Wu, G. Ding, Y. Wang, Y. Cao, H. Wang, C. Yang, Composite Electrodeposition of Zinc and Carbon Nanotubes, in: 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2006: pp. 455–458. https://doi.org/10.1109/nems.2006.334798.

  22. Y.S. Jeon, J.Y. Byun, and T.S. Oh, Electrodeposition and Mechanical Properties of Ni-Carbon Nanotube Nanocomposite Coatings, J. Phys. Chem. Solids, 2008, 69, p 1391–1394

    Article  Google Scholar 

  23. B.M. Praveen and T.V. Venkatesha, Electrodeposition and Properties of Zn-Ni-CNT Composite Coatings, J. Alloys Compd., 2009, 482, p 53–57

    Article  Google Scholar 

  24. L. Elias and A. Chitharanjan Hegde, Electrodeposition of Laminar Coatings of Ni–W Alloy and Their Corrosion Behaviour, Surf. Coat. Technol., 2015, 283, p 61–69. https://doi.org/10.1016/j.surfcoat.2015.10.025

    Article  Google Scholar 

  25. L. Elias, K. Scott, and A.C. Hegde, Electrolytic Synthesis and Characterization of Electrocatalytic Ni-W Alloy, J. Mater. Eng. Perform., 2015, 24, p 4182–4191. https://doi.org/10.1007/s11665-015-1710-z

    Article  Google Scholar 

  26. J. Yang, S.-C. Wang, X.-Y. Zhou, and J. Xie, Electrochemical Behaviors of Functionalized Carbon Nanotubes in LiPF6/EC + DMC Electrolyte, Int. J. Electrochem. Sci., 2012, 7, p 6118–6126

    Google Scholar 

  27. M.V. Naseh, A.A. Khodadadi, Y. Mortazavi, O.A. Sahraei, F. Pourfayaz, and S.M. Sedghi, Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma, World Acad. Sci. Eng. Technol., 2009, 49, p 177–179

    Google Scholar 

  28. K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, and D.H. Fairbrother, Surface and Structural Characterization of Multi-walled Carbon Nanotubes Following Different Oxidative Treatments, Carbon, 2011, 49, p 24–36

    Article  Google Scholar 

  29. L. Zhao and L. Gao, Coating Multi-walled Carbon Nanotubes with Zinc Sulfide, J. Mater. Chem., 2004, 14, p 1001–1004. https://doi.org/10.1039/B315450E

    Article  Google Scholar 

  30. S.A. Khabouri, S.A. Harthi, T. Maekawa, Y. Nagaoka, M.E. Elzain, A.A. Hinai, A.D. Al-Rawas, A.M. Gismelseed, and A.A. Yousif, Composition, Electronic and Magnetic Investigation of the Encapsulated ZnFe2O4 Nanoparticles in Multiwall Carbon Nanotubes Containing Ni Residuals, Nanoscale Res. Lett., 2015, 10, p 262. https://doi.org/10.1186/s11671-015-0971-7

    Article  Google Scholar 

  31. C.T.J. Low, R.G.A. Wills, and F.C. Walsh, Electrodeposition of Composite Coatings Containing Nanoparticles in a Metal Deposit, Surf. Coat. Technol., 2006, 201, p 371–383

    Article  Google Scholar 

  32. L. Elias and A.C. Hegde, Modification of Ni-P Alloy Coatings for Better Hydrogen Production by Electrochemical Dissolution and TiO2 Nanoparticles, RSC Adv., 2016, 6, p 66204–66214. https://doi.org/10.1039/C6RA09497J

    Article  Google Scholar 

  33. M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer, Berlin, 2003

    Google Scholar 

  34. L. Elias, P. Cao, and A.C. Hegde, Magnetoelectrodeposition of Ni-W Alloy Coatings for Enhanced Hydrogen Evolution Reaction, RSC Adv., 2016, 6, p 111358–111365. https://doi.org/10.1039/C6RA23944G

    Article  Google Scholar 

  35. N. Jiang, B. You, M. Sheng, and Y. Sun, Bifunctionality and Mechanism of Electrodeposited Nickel-Phosphorous Films for Efficient Overall Water Splitting, Chem. Cat. Chem., 2016, 8, p 106–112

    Google Scholar 

  36. L. Elias and A.C. Hegde, Synthesis and Characterization of Ni-P-Ag Composite Coating as Efficient Electrocatalyst for Alkaline Hydrogen Evolution Reaction, Electrochim. Acta, 2016, 219, p 377–385. https://doi.org/10.1016/j.electacta.2016.10.024

    Article  Google Scholar 

  37. M.P.M. Kaninski, V.M. Nikolic, G.S. Tasic, and Z.L. Rakocevic, Electrocatalytic Activation of Ni Electrode for Hydrogen Production by Electrodeposition of Co and V Species, Int. J. Hydrogen Energy, 2009, 34, p 703–709

    Article  Google Scholar 

  38. F.I. Danilov, A.V. Tsurkan, E.A. Vasil’eva, and V.S. Protsenko, Electrocatalytic Activity of Composite Fe/TiO2 Electrodeposits for Hydrogen Evolution Reaction in Alkaline Solutions, Int. J. Hydrogen Energy, 2016, 41, p 7363–7372

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Liju Elias is thankful to National Institute of Technology Karnataka (NITK), Surathkal, India, for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chitharanjan Hegde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elias, L., Hegde, A.C. Electrolytic Synthesis of Ni-W-MWCNT Composite Coating for Alkaline Hydrogen Evolution Reaction. J. of Materi Eng and Perform 27, 1033–1039 (2018). https://doi.org/10.1007/s11665-018-3134-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3134-z

Keywords

Navigation