Skip to main content
Log in

Electrochemical Growth of Surface Oxides on Nickel. Part 3: Formation of β-NiOOH in Relation to the Polarization Potential, Polarization Time, and Temperature

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electro-oxidation of surface β-Ni(OH)2 residing on metallic Ni to β-NiOOH was studied in 0.5 M aqueous KOH at 277 K ≤ T ≤ 318 K by means of cyclic voltammetry (CV) and chrono-amperometry (CA). The process is accompanied by a diffusion of H+ within the surface oxide phase. The formation of β-NiOOH gives rise to an anodic peak in CV profiles, the potential of which depends on the scan rate (s). An analysis of the relation between the anodic peak current density (j peak, AN) and s indicates that the growth of β-NiOOH is controlled by the diffusion of H+ and its modelling leads to the determination of the diffusion coefficient of H+ (D(H+)). In the case of 277 K ≤ T ≤ 318 K, the values of D(H+) are of the order of 10–11 cm2 s–1, when calculated with respect to the electrode’s geometric surface area (A geom), and of the order of 10–12 cm2 s–1, when calculated with respect to the electrochemically active surface area (A ecsa). The activation Gibbs energy of H+ diffusion (Δdiff G (H+)) is in the 19.5–22.6 kJ mol–1 range. Chrono-amperometry transients for the formation of β-NiOOH are analyzed on the basis of finite-space diffusion, with the assumption that β-NiOOH can be formed through three mechanistic pathways. The values of D(H+) determined for both A geom and A ecsa using this approach are of the order of 10–12 cm2 s–1. They are smaller than the analogous values of D(H+) determined on the basis of CV measurements but the values of Δdiff G (H+) obtained using these two experimental approaches are comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.V. Vazquez, G.F. Darbyshire, R.E. Carbonio, V.A. Macagno, J. Power Sources 25, 75 (1989)

    Article  CAS  Google Scholar 

  2. D.S. Hall, D.J. Lockwood, S. Poirier, C. Bock, B.R. MacDougall, J. Phys. Chem. A 116, 6771 (2012)

    Article  CAS  Google Scholar 

  3. H. Bode, K. Dehmelt, J. Witte, Electrochim. Acta 11, 1079 (1966)

    Article  CAS  Google Scholar 

  4. T. Ohligschläger, G. Schwitzgebel, Phys. Chem. Chem. Phys. 3, 5290 (2001)

    Article  Google Scholar 

  5. J.L. Bantignies, S. Deabate, A. Righi, S. Rols, P. Hermet, J.L. Sauvajol, F. Henn, J. Phys. Chem. C 112, 2193 (2008)

    Article  CAS  Google Scholar 

  6. R.S. McEwen, J. Phys. Chem. 75, 1782 (1971)

    Article  CAS  Google Scholar 

  7. D. Berndt, in Battery Technology Handbook, ed. by H.A. Kiehne (M. Dekker, New York, 2003). chapters 1.8.2-1.8.4

    Google Scholar 

  8. A.K. Shukla, S. Venugopalan, B. Hariprakash, J. Power Sources 100, 125 (2001)

    Article  CAS  Google Scholar 

  9. S.L. Medway, C.A. Lucas, A. Kowal, R.J. Nichols, D. Johnson, J. Electroanal. Chem. 587, 172 (2006)

    Article  CAS  Google Scholar 

  10. K. Juodkazis, J. Juodkazytė, R. Vilkauskaitė, V. Jasulaitienė, J. Solid State Electrochem. 12, 1469 (2008)

    Article  CAS  Google Scholar 

  11. M.E.G. Lyons, R.L. Doyle, I. Godwin, M. O’Brien, L. Russell, J. Electrochem. Soc. 159, H932 (2012)

    Article  CAS  Google Scholar 

  12. M.E.G. Lyons, L. Russell, M. O’Brien, R.L. Doyle, I. Godwin, M.P. Brandon, Int. J. Electrochem. Sci. 7, 2710 (2012)

    CAS  Google Scholar 

  13. M. Grdeń, K. Klimek, A. Czerwiński, J. Solid State Electrochem. 8, 390 (2004)

    Article  Google Scholar 

  14. M. Grdeń, K. Klimek, J. Electroanal. Chem. 581, 122 (2005)

    Article  Google Scholar 

  15. C.A. Melendres, M. Pankuch, J. Electroanal. Chem. 333, 103 (1992)

    Article  CAS  Google Scholar 

  16. W. Paik, Z. Szklarska-Smialowska, Surf. Sci. 96, 401 (1980)

    Article  CAS  Google Scholar 

  17. A.A. Wronkowska, Surf. Sci. 214, 507 (1989)

    Article  CAS  Google Scholar 

  18. G. Larramona, C. Gutierrez, J. Electrochem. Soc. 137, 428 (1990)

    Article  CAS  Google Scholar 

  19. C. Zhang, S.M. Park, J. Electrochem. Soc. 136, 3333 (1989)

    Article  CAS  Google Scholar 

  20. J. Nan, Y. Yang, Z. Lin, Electrochim. Acta 51, 4873 (2006)

    Article  CAS  Google Scholar 

  21. W. Visscher, E. Barendrecht, Surf. Sci. 135, 436 (1983)

    Article  CAS  Google Scholar 

  22. S.L. Yau, F.R.F. Fan, T.P. Moffat, A.J. Bard, J. Phys. Chem. 98, 5493 (1994)

    Article  CAS  Google Scholar 

  23. L.M.M. de Souza, F.P. Kong, F.R. McLarmont, R.H. Muller, Electrochim. Acta 42, 1253 (1997)

    Article  Google Scholar 

  24. A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, J. Solid State Electrochem. 9, 337 (2005)

    Article  CAS  Google Scholar 

  25. A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, J. Electrochem. Soc. 153, B453 (2006)

    Article  CAS  Google Scholar 

  26. F. Hahn, B. Beden, M.J. Croissant, C. Lamy, Electrochim. Acta 31, 335 (1986)

    Article  CAS  Google Scholar 

  27. F. Hahn, D. Floner, B. Beden, C. Lamy, Electrochim. Acta 32, 1631 (1987)

    Article  CAS  Google Scholar 

  28. S. Motupally, C.C. Streinz, J.W. Weidner, J. Electrochem. Soc. 142, 1401 (1995)

    Article  CAS  Google Scholar 

  29. Z. Mao, P. De Vidts, R.E. White, J. Newman, J. Electrochem. Soc. 141, 54 (1994)

    Article  CAS  Google Scholar 

  30. M.S. Kim, K.B. Kim, J. Electrochem. Soc. 145, 507 (1998)

    Article  CAS  Google Scholar 

  31. S.I. Cordoba-Torresi, C. Gabrielli, A. Hugot-Le Goff, R. Torresi, J. Electrochem. Soc. 138, 1548 (1991)

    Article  CAS  Google Scholar 

  32. P. Bernard, C. Gabrielli, M. Keddam, H. Takenouti, J. Leonardi, P. Blanchard, Electrochim. Acta 36, 743 (1991)

    Article  CAS  Google Scholar 

  33. I.C. Faria, R. Torresi, A. Gorenstein, Electrochim. Acta 38, 2765 (1993)

    Article  CAS  Google Scholar 

  34. M. Gonsalves, A.R. Hillman, J. Electroanal. Chem. 454, 183 (1998)

    Article  CAS  Google Scholar 

  35. H.M. French, M.J. Henderson, A.R. Hillman, E. Veil, J. Electroanal. Chem. 500, 192 (2001)

    Article  CAS  Google Scholar 

  36. M.S. Kim, T.S. Hwang, K.B. Kim, J. Electrochem. Soc. 144, 1537 (1997)

    Article  CAS  Google Scholar 

  37. G.T. Cheek, W.E. O’Grady, J. Electroanal. Chem. 421, 173 (1997)

    Article  CAS  Google Scholar 

  38. Y. Mo, E. Hwang, D.A. Scherson, J. Electrochem. Soc. 143, 37 (1996)

    Article  CAS  Google Scholar 

  39. S.I. Pyun, K.H. Kim, J.N. Han, J. Power Sources 91, 92 (2000)

    Article  CAS  Google Scholar 

  40. M. Wehrens-Dijksma, P.H.L. Notten, Electrochim. Acta 51, 3609 (2006)

    Article  CAS  Google Scholar 

  41. M. Vidotti, R. Torresi, S.I. Córdoba de Torresi, Quim. Nova 33, 2176 (2010)

    Article  CAS  Google Scholar 

  42. C. Zhang, S.M. Park, J. Electrochem. Soc. 134, 2966 (1987)

    Article  CAS  Google Scholar 

  43. G. Barral, S. Maximovitch, F. Njanjo-Eyoke, Electrochim. Acta 41, 1305 (1996)

    Article  CAS  Google Scholar 

  44. R.S. Schrebler-Guzmán, J.R. Vilche, A.J. Arvía, J. Electrochem. Soc. 125, 1578 (1978)

    Article  Google Scholar 

  45. R.S. Schrebler-Guzmán, J.R. Vilche, A.J. Arvía, J. Appl. Electrochem. 9, 183 (1979)

    Article  Google Scholar 

  46. H. Gómez Meier, J.R. Vilche, A.J. Arvía, J. Appl. Electrochem. 10, 611 (1980)

    Article  Google Scholar 

  47. A.K.M. Fazle Kibria, S.A. Tarafdar, Int. J. Hydrogen Energy 27, 879 (2002)

    Article  CAS  Google Scholar 

  48. L. Bing, Y. Huatang, Z. Yunshi, Z. Zuoxiang, S. Deying, J. Power Sources 79, 277 (1999)

    Article  CAS  Google Scholar 

  49. X. Cao, J. Wei, Y. Luo, Z. Zhou, Y. Zhang, Int. J. Hydrogen Energy 25, 643 (2000)

    Article  CAS  Google Scholar 

  50. D.M. MacArthur, J. Electrochem. Soc. 117, 422 (1970)

    Article  CAS  Google Scholar 

  51. S. Deabate, F. Fourgeot, F. Henn, Electrochim. Acta 51, 5430 (2006)

    Article  CAS  Google Scholar 

  52. X.J. Han, P. Xu, C.Q. Xu, L. Zhao, Z.B. Mo, T. Liu, Electrochim. Acta 50, 2763 (2005)

    Article  CAS  Google Scholar 

  53. K.P. Ta, J. Newman, J. Electrochem. Soc. 145, 3860 (1998)

    Article  CAS  Google Scholar 

  54. X.Y. Wang, J. Yan, Y.S. Zhang, H.T. Yuan, D.Y. Song, J. Appl. Electrochem. 28, 1377 (1998)

    Article  CAS  Google Scholar 

  55. G.W.D. Briggs, P.R. Snodin, Electrochim. Acta 27, 565 (1982)

    Article  CAS  Google Scholar 

  56. L. Xiao, J.T. Lu, P.F. Liu, L. Zhuang, J. Yan, Y. Hu, B. Mao, C. Lin, J. Phys. Chem. B 109, 3860 (2005)

    Article  CAS  Google Scholar 

  57. H.S. Kim, T. Itoh, M. Nishizawa, M. Mohamedi, M. Umeda, I. Uchida, Int. J. Hydrogen Energy 27, 295 (2002)

    Article  Google Scholar 

  58. Y.G. Yoon, S.I. Pyun, Electrochim. Acta 42, 2465 (1997)

    Article  CAS  Google Scholar 

  59. G.W.D. Briggs, M. Fleischmann, Trans. Faraday Soc. 67, 2397 (1971)

    Article  CAS  Google Scholar 

  60. D.M. MacArthur, J. Electrochem. Soc. 117, 729 (1970)

    Article  Google Scholar 

  61. G. Barral, F. Njanjo-Eyoke, S. Maximovitch, Electrochim. Acta 40, 2815 (1995)

    Article  CAS  Google Scholar 

  62. S. Maximovitch, Electrochim. Acta 41, 2761 (1996)

    Article  CAS  Google Scholar 

  63. H. Chen, J.M. Wang, T. Pan, Y.L. Zhao, J.Q. Zhang, C.N. Cao, J. Power Sources 143, 243 (2005)

    Article  CAS  Google Scholar 

  64. Y.L. Zhao, J.M. Wang, H. Chen, T. Pan, J.Q. Zhang, C.N. Cao, Electrochim. Acta 50, 91 (2004)

    Article  Google Scholar 

  65. K. Watanabe, T. Kikuoka, N. Kumagai, J. Appl. Electrochem. 25, 219 (1995)

    Article  CAS  Google Scholar 

  66. Z. Takehara, M. Kato, S. Yoshizawa, Electrochim. Acta 16, 833 (1971)

    Article  CAS  Google Scholar 

  67. G. Gille, S. Albrecht, J. Meese-Marktscheffel, A. Olbrich, F. Schrumpf, Solid State Ionics 148, 269 (2002)

    Article  CAS  Google Scholar 

  68. S. Motupally, C.C. Streinz, J.W. Weidner, J. Electrochem. Soc. 145, 29 (1998)

    Article  CAS  Google Scholar 

  69. B. Paxton, J. Newman, J. Electrochem. Soc. 143, 1287 (1996)

    Article  CAS  Google Scholar 

  70. M. Opallo, A. Prokopowicz, Electrochem. Commun. 5, 737 (2003)

    Article  CAS  Google Scholar 

  71. H. Zhou, Z. Zhou, Solid State Ionics 176, 1909 (2005)

    Article  CAS  Google Scholar 

  72. V. Srinivasan, J.W. Weidner, R.E. White, J. Solid State Electrochem. 4, 367 (2000)

    Article  CAS  Google Scholar 

  73. S.S. Fomanyuk, Y.S. Krasnov, G.Y. Kolbasov, J. Solid State Electrochem. 17, 2643 (2013)

    Article  CAS  Google Scholar 

  74. D.D. MacDonald, S.J. Smedley, Electrochim. Acta 35, 1949 (1990)

    Article  CAS  Google Scholar 

  75. W.C. Chen, B.J. Heuser, J. Alloys Compd. 312, 176 (2000)

    Article  CAS  Google Scholar 

  76. O.M. Katz, E.A. Gulbransen, Rev. Sci. Instrum. 31, 615 (1960)

    Article  CAS  Google Scholar 

  77. D.N. Jewett, A.C. Makrides, Trans. Faraday Soc. 61, 932 (1965)

    Article  CAS  Google Scholar 

  78. X.Q. Tong, Y. Sakamoto, F.A. Lewis, R.V. Bucur, K. Kandasamy, Int. J. Hydrogen Energy 22, 141 (1997)

    Article  CAS  Google Scholar 

  79. M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrocatalysis 2, 317 (2011)

    Article  CAS  Google Scholar 

  80. M. Alsabet, M. Grdeń, G. Jerkiewicz, Electrocatalysis 5, 136 (2014)

    Article  CAS  Google Scholar 

  81. S.A.S. Machado, L.A. Avaca, Electrochim. Acta 39, 1385 (1994)

    Article  CAS  Google Scholar 

  82. M. Grdeń, M. Alsabet, G. Jerkiewicz, ACS Appl. Mater. Interfaces 4, 3012 (2012)

    Article  Google Scholar 

  83. A.J. Bard, L. Faulkner, Electrochemical Methods. Fundamentals and Applications (Wiley, New York, 1980)

    Google Scholar 

  84. O.A. Kozaderov, A.V. Vvedenskii, Russ. J. Electrochem. 37, 798 (2001)

    Article  CAS  Google Scholar 

  85. M. Dmochowska, A. Czerwiński, J. Solid State Electrochem. 2, 16 (1998)

    Article  CAS  Google Scholar 

  86. W. Visscher, E. Barendrecht, Electrochim. Acta 25, 651 (1980)

    Article  CAS  Google Scholar 

  87. A. Kowal, R. Niewiara, B. Perończyk, J. Haber, Langmuir 12, 2332 (1996)

    Article  CAS  Google Scholar 

  88. K. Aoki, K. Tokuda, H. Matsuda, J. Electroanal. Chem. 160, 33 (1984)

    Article  CAS  Google Scholar 

  89. A.K. Hjelm, G. Lindbergh, A. Lundqvist, J. Electroanal. Chem. 506, 82 (2001)

    Article  CAS  Google Scholar 

  90. M.E.G. Lyons, H.G. Fay, J.G. Vos, A.J. Kelly, J. Electroanal. Chem. 250, 207 (1988)

    Article  CAS  Google Scholar 

  91. D. Benito, J.J. García-Jareño, J. Navarro-Laboulais, F. Vicente, J. Electroanal. Chem. 446, 47 (1998)

    Article  CAS  Google Scholar 

  92. A.T. Hubbard, F.C. Anson, Anal. Chem. 38, 58 (1966)

    Article  CAS  Google Scholar 

  93. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1995), pp. 4–71

    Google Scholar 

  94. B. Scharifker, G. Hills, Electrochim. Acta 28, 879 (1983)

    Article  CAS  Google Scholar 

  95. S. Fletcher, A. Smith, Can. J. Chem. 56, 606 (1978)

    Article  CAS  Google Scholar 

  96. J.W. Lee, S.I. Pyun, Electrochim. Acta 50, 1777 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the NSERC of Canada and Queen’s University, and collaboration with VALE (formerly Vale-Inco). M. Alsabet thanks Kuwait University for a graduate fellowship. M. Grdeń acknowledges a leave of absence from Warsaw University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Jerkiewicz.

Additional information

Michal Grdeń is on leave of absence from Warsaw University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsabet, M., Grdeń, M. & Jerkiewicz, G. Electrochemical Growth of Surface Oxides on Nickel. Part 3: Formation of β-NiOOH in Relation to the Polarization Potential, Polarization Time, and Temperature. Electrocatalysis 6, 60–71 (2015). https://doi.org/10.1007/s12678-014-0214-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0214-1

Keywords

Navigation