Skip to main content
Log in

Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The influence of the oxidation of Ni electrodes on the kinetics of the hydrogen oxidation (HOR) and evolution reactions (HER) has been explored by combining an experimental cyclic voltammetry study, microkinetic modeling and X-ray photoelectron spectroscopic analysis. Almost 10 times enhancement of the activity of Ni in the HOR/HER has been observed after its oxidation under the contact with air at ambient conditions and assigned to the presence of NiO species on the surface of metallic Ni. The experimental cyclic voltammetry curves have been analyzed with the help of kinetic model in order to shed light on the mechanism of the HOR/HER for two types of Ni electrodes and its dependence on the presence of NiO on the surface of the electrode. The main features of the experimental current-potential curves can be reproduced with a kinetic model assuming that the free energy of the adsorbed hydrogen intermediate is increased and that the kinetics of the Volmer step is enhanced in the presence of nickel oxide species. The kinetic model provides evidence for the switching from the Heyrovsky–Volmer mechanism on metallic Ni to Tafel–Volmer mechanism on the activated electrode, where surface oxide species co-exist with metal Ni sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 27:235–264

    Article  CAS  Google Scholar 

  2. Safizadeh F, Ghali E, Houlachi G (2015) Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int J Hydrogen Energy 40:256–274

    Article  CAS  Google Scholar 

  3. Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu T, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7:3135–3191

    Article  CAS  Google Scholar 

  4. Zhou T, Shao R, Chen S, He X, Qiao J, Zhang J (2015) A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J Power Sources 293:946–975

    Article  CAS  Google Scholar 

  5. Slade RCT, Kizewski JP, Poynton SD, Zeng R, Varcoe JR (2013) Alkaline membrane fuel cells. In: Meyers RA (ed) Fuel Cells. Springer, New York, pp 9–29

    Chapter  Google Scholar 

  6. Kiros Y, Majari M, Nissinen TA (2003) Effect and characterization of dopants to Raney nickel for hydrogen oxidation. J Alloys Compd 360:279–285

    Article  CAS  Google Scholar 

  7. Birry L, Lasia A (2004) Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J Appl Electrochem 34:735–749

    Article  CAS  Google Scholar 

  8. Endoh E, Otouma H, Morimoto T, Oda Y (1987) New Raney nickel composite-coated electrode for hydrogen evolution. Int J Hydrogen Energy 12:473–479

    Article  CAS  Google Scholar 

  9. Oshchepkov AG, Simonov PA, Cherstiouk OV, Nazmutdinov RR, Glukhov DV, Zaikovskii VI, Kardash TYu, Kvon RI, Bonnefont A, Simonov AN, Parmon VN, Savinova ER (2015) On the effect of Cu on the activity of carbon supported Ni nanoparticles for hydrogen electrode reactions in alkaline medium. Top Catal 58:1181–1192

    Article  CAS  Google Scholar 

  10. Bates MK, Jia Q, Ramaswamy N, Ramaswamy N, Allen RJ, Mukerjee S (2015) Composite Ni/NiO–Cr2O3 catalyst for alkaline hydrogen evolution reaction. J Phys Chem C 119:5467–5477

    Article  CAS  Google Scholar 

  11. Sheng W, Bivens AP, Myint M, Zhuang Z, Forest RV, Fang Q, Chen JG, Yan Y (2014) Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ Sci 7:1719–1724

    Article  CAS  Google Scholar 

  12. Raj IA, Vasu KI (1990) Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem 20:32–38

    Article  CAS  Google Scholar 

  13. Bockris JO, Potter EC (1952) The mechanism of hydrogen evolution at nickel cathodes in aqueous solutions. J Chem Phys 20:614–628

    Article  CAS  Google Scholar 

  14. Makrides AC (1962) Hydrogen overpotential on nickel in alkaline solution. J Electrochem Soc 109:977–984

    Article  CAS  Google Scholar 

  15. Doyle DM, Palumbo G, Aust KT, El-Sherik AM, Erb U (1995) The influence of intercrystalline defects on hydrogen activity and transport in nickel. Acta Metall Mater 43:3027–3033

    Article  CAS  Google Scholar 

  16. Weininger JL, Breiter MW (1964) Hydrogen evolution and surface oxidation of nickel electrodes in alkaline solution. J Electrochem Soc 111:707–712

    Article  CAS  Google Scholar 

  17. Lasia A, Rami A (1990) Kinetics of hydrogen evolution on nickel electrodes. J Electroanal Chem Interfacial Electrochem 294:123–141

    Article  CAS  Google Scholar 

  18. Ahn SH, Hwang SJ, Yoo SJ, Choi I, Kim H-J, Jang JH, Nam SW, Lim T-H, Lim T, Kim S-K, Kim JJ (2012) Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. J Mater Chem 22:15153–15159

    Article  CAS  Google Scholar 

  19. Floner D, Lamy C, Leger J-M (1990) Electrocatalytic oxidation of hydrogen on polycrystal and single-crystal nickel electrodes. Surf Sci 234:87–97

    Article  CAS  Google Scholar 

  20. Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D (2006) In situ studies of the oxidation of nickel electrodes in alkaline solution. J Electroanal Chem 587:172–181

    Article  CAS  Google Scholar 

  21. Hall DS, Bock C, MacDougall BR (2013) The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution. J Electrochem Soc 160:F235–F243

    Article  CAS  Google Scholar 

  22. Scherer J, Ocko B, Magnussen O (2003) Structure, dissolution, and passivation of Ni(111) electrodes in sulfuric acid solution: an in situ STM, X-ray scattering, and electrochemical study. Electrochim Acta 48:1169–1191

    Article  CAS  Google Scholar 

  23. Holloway PH (1981) Chemisorption and oxide formation on metals: oxygen–nickel reaction. J Vac Sci Technol 18:653–659

    Article  CAS  Google Scholar 

  24. Danilovic N, Subbaraman R, Strmcnik D, Chang K-C, Paulikas AP, Stamenkovic VR, Markovic NM (2012) Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew Chem Int Ed Engl 51:12495–12498

    Article  CAS  Google Scholar 

  25. Gong M, Zhou W, Tsai M-C, Zhou J, Guan M, Lin M-C, Zhang B, Hu Y, Wang D-Y, Yang J, Pennycook SJ, Hwang B-J, Dai H (2014) Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun 5:4695

    Article  CAS  Google Scholar 

  26. Yan X, Tian L, Chen X (2015) Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction. J Power Sources 300:336–343

    Article  CAS  Google Scholar 

  27. Quaino PM, Gennero de Chialvo MR, Chialvo AC (2007) Hydrogen electrode reaction: a complete kinetic description. Electrochim Acta 52:7396–7403

    Article  CAS  Google Scholar 

  28. Montero MA, Gennero de Chialvo MR, Chialvo AC (2015) Kinetics of the hydrogen oxidation reaction on nanostructured rhodium electrodes in alkaline solution. J Power Sources 283:181–186

    Article  CAS  Google Scholar 

  29. Wang JX, Springer TE, Adzic RR (2006) Dual-pathway kinetic equation for the hydrogen oxidation reaction on Pt electrodes. J Electrochem Soc 153:A1732–A1740

    Article  CAS  Google Scholar 

  30. Wang JX, Springer TE, Liu P, Shao M, Adzic RR (2007) Hydrogen oxidation reaction on Pt in acidic media: adsorption isotherm and activation free energies. J Phys Chem C 111:12425–12433

    Article  CAS  Google Scholar 

  31. Rau MS, Gennero de Chialvo MR, Chialvo AC (2010) A feasible kinetic model for the hydrogen oxidation on ruthenium electrodes. Electrochim Acta 55:5014–5018

    Article  CAS  Google Scholar 

  32. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:13801

    Article  Google Scholar 

  33. Bonnefont A, Simonov AN, Pronkin SN, Gerasimov EYu, Pyrjaev PA, Parmon VN, Savinova ER (2013) Hydrogen electrooxidation on PdAu supported nanoparticles: an experimental RDE and kinetic modeling study. Catal Today 202:70–78

    Article  CAS  Google Scholar 

  34. Pronkin SN, Bonnefont A, Ruvinskiy PS, Savinova ER (2010) Hydrogen oxidation kinetics on model Pd/C electrodes: electrochemical impedance spectroscopy and rotating disk electrode study. Electrochim Acta 55:3312–3323

    Article  CAS  Google Scholar 

  35. Kreysa G, Hakansson B, Ekdunge P (1988) Kinetic and thermodynamic analysis of hydrogen evolution at nickel electrodes. Electrochim Acta 33:1351–1357

    Article  CAS  Google Scholar 

  36. Krstajić N, Popović M, Grgur B, Vojnović M, Šepa D (2001) On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution. J Electroanal Chem 512:16–26

    Article  Google Scholar 

  37. Franceschini EA, Lacconi GI, Corti HR (2015) Kinetics of the hydrogen evolution on nickel in alkaline solution: new insight from rotating disk electrode and impedance spectroscopy analysis. Electrochim Acta 159:210–218

    Article  CAS  Google Scholar 

  38. Machado SAS, Avaca LA (1994) The hydrogen evolution reaction on nickel surfaces stabilized by H-absorption. Electrochim Acta 39:1385–1391

    Article  CAS  Google Scholar 

  39. Alsabet M, Grdeń M, Jerkiewicz G (2011) Electrochemical growth of surface oxides on nickel. Part 1: formation of α-Ni(OH)2 in relation to the polarization potential, polarization time, and temperature. Electrocatalysis 2:317–330

    Article  CAS  Google Scholar 

  40. Yeh J-J (1993) Atomic calculation of photoionization cross-sections and asymmetry parameters. Gordon & Breach Science Publ.; AT&T Bell Laboratories

  41. Simpraga R, Conway BE (1990) Realization of monolayer levels of surface oxidation of nickel by anodization at low temperatures. J Electroanal Chem 280:341–357

    Article  CAS  Google Scholar 

  42. Grdeń M, Klimek K (2005) EQCM studies on oxidation of metallic nickel electrode in basic solutions. J Electroanal Chem 581:122–131

    Article  Google Scholar 

  43. Hall DS, Lockwood DJ, Bock C, Macdougall BR (2015) Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc R Soc A Math Phys Eng Sci 471:20140792

    Article  Google Scholar 

  44. Grdeń M, Alsabet M, Jerkiewicz G (2012) Surface science and electrochemical analysis of nickel foams. ACS Appl Mater Interfaces 4:3012–3021

    Article  Google Scholar 

  45. Visscher W, Barendrecht E (1980) Absorption of hydrogen in reduced nickel oxide. J Appl Electrochem 10:269–274

    Article  CAS  Google Scholar 

  46. Melendres CA, Pankuch M (1992) On the composition of the passive film on nickel: a surface-enhanced Raman spectroelectrochemical study. J Electroanal Chem 333:103–113

    Article  CAS  Google Scholar 

  47. Seyeux A, Maurice V, Klein LH, Marcus P (2005) In situ scanning tunnelling microscopic study of the initial stages of growth and of the structure of the passive film on Ni(111) in 1 mM NaOH(aq). J Solid State Electrochem 9:337–346

    Article  CAS  Google Scholar 

  48. Che F, Gray JT, Ha S, McEwen J-S (2015) Catalytic water dehydrogenation and formation on nickel: dual path mechanism in high electric fields. J Catal 332:187–200

    Article  CAS  Google Scholar 

  49. German ED, Sheintuch M (2011) Oxygen-assisted water dissociation on metal surfaces: kinetics and quantum effects. J Phys Chem C 115:10063–10072

    Article  CAS  Google Scholar 

  50. Wang GC, Tao SX, Bu XH (2006) A systematic theoretical study of water dissociation on clean and oxygen-preadsorbed transition metals. J Catal 244:10–16

    Article  CAS  Google Scholar 

  51. Schulze M, Reißner R, Bolwin K, Kuch W (1995) Interaction of water with clean and oxygen precovered nickel surfaces. Fresenius J Anal Chem 353:661–665

    Article  CAS  Google Scholar 

  52. Payne BP, Biesinger MC, McIntyre NS (2009) The study of polycrystalline nickel metal oxidation by water vapour. J Electron Spectros Relat Phenom 175:55–65

    Article  CAS  Google Scholar 

  53. Mohsenzadeh A, Richards T, Bolton K (2016) DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces. Surf Sci 644:53–63

    Article  CAS  Google Scholar 

  54. Liu S, Ishimoto T, Koyama M (2015) First-principles study of oxygen coverage effect on hydrogen oxidation on Ni(111) surface. Appl Surf Sci 333:86–91

    Article  CAS  Google Scholar 

  55. Greeley J, Mavrikakis M (2003) A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surf Sci 540:215–229

    Article  CAS  Google Scholar 

  56. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Nørskov JK (2006) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater 5:909–913

    Article  CAS  Google Scholar 

  57. Sheng W, Myint MNZ, Chen JG, Yan Y (2013) Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci 6:1509–1512

    Article  CAS  Google Scholar 

  58. Santos E, Hindelang P, Quaino P, Schulz EN, Soldano G, Schmickler W (2011) Hydrogen electrocatalysis on single crystals and on nanostructured electrodes. ChemPhysChem 12:2274–2279

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the grant ERA.Net RUS No. 208 and Russian Academy of Science and Federal Agency of Scientific Organizations (Project No. V.46.4.4). The authors express their gratitude to Dr. Thierry Dintzer for SEM measurements. Valuable discussions with Dr. Olga V. Cherstiouk and Dr. Pavel A. Simonov (Boreskov Institute of Catalysis, Russia) are highly appreciated. A.G.O. acknowledges financial support from RFBR (Project No. 16-33-00331 mol_a) and PhD scholarships of French government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr G. Oshchepkov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshchepkov, A.G., Bonnefont, A., Saveleva, V.A. et al. Exploring the Influence of the Nickel Oxide Species on the Kinetics of Hydrogen Electrode Reactions in Alkaline Media. Top Catal 59, 1319–1331 (2016). https://doi.org/10.1007/s11244-016-0657-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0657-0

Keywords

Navigation