Skip to main content
Log in

An Ultrahigh Selective and Sensitive Enzyme-Free Hydrogen Peroxide Sensor Based on Palladium Nanoparticles and Nafion-Modified Electrode

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

An ultrahigh selective and sensitive hydrogen peroxide electrochemical sensor was developed based on palladium nanoparticles and nafion-modified electrode in enzyme-free conditions. The surface morphology of the fabricated electrode was characterized by using field emission scanning electron microscopy and electrochemical impedance spectroscopy. The fabricated sensor displayed an excellent electrocatalytic reduction of hydrogen peroxide (H2O2) at −0.2 V. The as-prepared-modified electrode displayed a very fast amperometric response (<2 s) of H2O2, indicating excellent electrocatalytic performance of the modified electrode. The sensor showed wide linear range response from 0.1 μM to 9 mM with a limit of detection of 0.018 μM for the determination of H2O2. In addition, the sensor displayed a high sensitivity of 0.766 μA μM−1 cm−2 with acceptable repeatability, reproducibility, and stability. The developed H2O2 sensor is highly selective even in the presence of higher concentrations of the potentially interfering species. The good practicality of the sensor indicates that it could be used as a good potential candidate for the real-time sensing of H2O2.

Schematic representation of the typical electrochemical reduction of H2O2 at Pd nanoparticles and nafion-modified glassy carbon electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Yin, X. Qi, L. Yang, G. Hao, J. Li, J. Zhong, Electrochimica Acta 56, 3884–3889 (2011)

    Article  CAS  Google Scholar 

  2. W. Chen, S. Cai, Q.Q. Ren, W. Wen, Y.D. Zhao, Analyst 137, 49–58 (2012)

    Article  CAS  Google Scholar 

  3. V.N. Gorala, M.I. Nelena, A.D. Ryabovab, Anal. Lett. 28, 2139–2148 (1995)

    Article  Google Scholar 

  4. S. Sakaia, T. Satowa, K. Imakawa, K. Nagaoka, J. Dairy Res. 75, 257–261 (2008)

    Google Scholar 

  5. P.A. Weber, J.E. Thomas, W.M. Skinner, R.S.C. Smart, Appl. Geochem. 19, 687–694 (2004)

    Article  CAS  Google Scholar 

  6. S. Liu, Z.H. Dai, H.Y. Chen, H. Ju, Biosens. Bioelectron. 19, 963–969 (2004)

    Article  CAS  Google Scholar 

  7. J. Hong, Z. Dai, Sens. Actuat B 140, 222–226 (2009)

    Article  CAS  Google Scholar 

  8. Q. Xu, J. Zhu, X. Hu, Anal. Chim. Acta 597, 151–156 (2007)

    Article  CAS  Google Scholar 

  9. G. Zhao, M. Xu, Q. Zhang, Electrochem. Commun. 10, 1924–1926 (2008)

    Article  CAS  Google Scholar 

  10. Z. Liu, B. Zhao, Y. Shia, C. Guo, H. Yang, Z. Li, Talanta 81, 1650–1654 (2010)

    Article  CAS  Google Scholar 

  11. R. Ojani, J.B. Raoof, S. Fathi, J. Solid State Electrochem. 13, 837–842 (2009)

    Article  CAS  Google Scholar 

  12. Q. Sheng, M. Wang, J. Zheng, Sens. Actuators B 160, 1070–1077 (2011)

    Article  CAS  Google Scholar 

  13. H.W. Siao, S.M. Chen, K.C. Lin, J. Solid State Electrochem. 15, 1121–1128 (2011)

    Article  CAS  Google Scholar 

  14. R. Wu, X. Chen, J. Hu, J. Solid State Electrochem. 16, 1975–1982 (2012)

    Article  CAS  Google Scholar 

  15. J. Wang, L. Cui, H. Yin, J. Dong, S. Ai, J. Solid State Electrochem. 16, 1545–1550 (2012)

    Article  CAS  Google Scholar 

  16. X. Cao, W. Ning, L.D. Li, L. Guo, Sens Actuators B 129, 268–273 (2008)

    Article  Google Scholar 

  17. Z. Zhuang, Applied Mechanics and Materials 117-119, 790–794 (2012)

  18. X. Wang, H. Zhang, E. Wang, Z. Han, C. Hu, Mater. Lett. 58, 1661–1664 (2004)

    Article  CAS  Google Scholar 

  19. C. Lei, J. Deng, Anal. Chem. 68, 3344–3349 (1996)

    Article  CAS  Google Scholar 

  20. Q. Sheng, M. Wang, J. Zheng, Sens. Actuators B 160, 1070–1077 (2011)

    Article  CAS  Google Scholar 

  21. K. Zhou, Y. Zhu, X. Yang, J. Luo, C. Li, S. Luan, Electrochim. Acta 55, 3055–3060 (2010)

    Article  CAS  Google Scholar 

  22. L. Wang, H. Zhu, H. Hou, Z. Zhang, X. Xiao, Y. Song, J. Solid State Electrochem. 16, 1693–1700 (2012)

    Article  CAS  Google Scholar 

  23. X. Chen, Z. Cai, Z. Huang, M. Oyamac, Y. Jiang, X. Chen, Electrochim. Acta 97, 398–403 (2013)

    Article  CAS  Google Scholar 

  24. W.J. Zhang, L. Bai, L.M. Lu, Z. Chen, Colloids Surf. B 97, 145–149 (2012)

    Article  CAS  Google Scholar 

  25. S. Thiagarajan, R.F. Yang, S.M. Chen, Bioelectrochemistry 75, 163–169 (2009)

    Article  CAS  Google Scholar 

  26. M. Rajkumar, S. Thiagarajan, S.M. Chen, J. Appl, Electrochem. 41, 663–668 (2011)

    Article  CAS  Google Scholar 

  27. M.A. Aziz, A.N. Kawde, Microchim. Acta 180, 837–843 (2013)

    Article  Google Scholar 

  28. R.K. Joshi, S. Krishnan, M. Yoshimura, A. Kumar, Nanoscale Res. Lett. 4, 1191–1196 (2009)

    Article  CAS  Google Scholar 

  29. S. Chen, R. Yuan, Y. Chai, F. Hu, Microchim. Acta 180, 15–32 (2013)

    Article  CAS  Google Scholar 

  30. A. Babaei, A.R. Taheri, Sens. Actuators B 176, 543–551 (2013)

    Article  CAS  Google Scholar 

  31. M. Jamal, M. Hasan, A. Mathewson, K.M. Razeeb, J. Electrochem. Soc. 159, 825–829 (2012)

    Article  Google Scholar 

  32. V.C. Diculescu, A.M.C. Paquim, O. Corduneanu, A.M.O. Brett, J. Solid State Electrochem. 11, 887–898 (2007)

    Article  CAS  Google Scholar 

  33. J.S. Gullo, A. Rodes, V. Montiel, A. Aldaz, J. Clavilier, J. Electroanal Chem. 554–555, 273–284 (2003)

    Google Scholar 

  34. A.D. Carbo, E. Coronado, D. Pilar, A. Ribera, Electroanalysis 22, 293–302 (2010)

    Article  Google Scholar 

  35. J. Huang, D. Wang, H. Hou, T. You, Adv. Funct. Mater. 18, 441–448 (2008)

    Article  CAS  Google Scholar 

  36. S.L. Mei, C.D. Xue, W.G. Ling, L.Y. Zhuo, Z.M. Lin, Acta. Phys. Chim. Sin. 24, 323–327 (2008)

    Google Scholar 

  37. L.T. Cai, H.Y. Chen, Sens. Actuators B 55, 14–18 (1999)

    Article  CAS  Google Scholar 

  38. X. Bo, J. Bai, J. Ju, L. Guo, Anal. Chim. Acta 675, 29–35 (2010)

    Article  CAS  Google Scholar 

  39. P. Zhou, Z. Dai, M. Fang, X. Huang, J. Bao, J. Phys Chem. C 111, 12609–12616 (2007)

    Article  CAS  Google Scholar 

  40. J.M. You, D. Kim, S.K. Kim, M.S. Kim, H.S. Han, S. Jeon, Sens. Actuators B 178, 450–457 (2013)

    Article  CAS  Google Scholar 

  41. J.M. You, Y.N. Jeong, M.S. Ahmed, S.K. Kim, H.C. Choi, S. Jeon, Biosens. Bioelectron. 26, 2287–2291 (2011)

    Article  CAS  Google Scholar 

  42. F. Jiang, R. Yue, Y. Du, J. Xu, P. Yang, Biosens. Bioelectron. 44, 127–131 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council and the Ministry of Education of Taiwan (Republic of China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Ming Chen.

Additional information

Novelty of this work

• For the first time, we reported an ultrahigh sensitive and selective H2O2 electrochemical sensor based on Pd-NPs and nafion-modified electrode.

• As far as we know, the obtained sensitivity, linear response, and detection limit are the best among all previously reported H2O2 sensors based on Pd-NP nanostructures.

• The Pd-NPs were prepared by simple electrochemical deposition, which is a more convenient method for fabrication of uniform sized Pd-NPs when compared with other exiting methods.

• We used negatively charged nafion polymer onto the Pd-NPs electrodeposited electrode for the ultra selective determination of H2O2.

• The modified electrode demonstrates ultra sensitive and selective towards H2O2.

• The sensor displayed excellent long-term stability (60 days).

• The excellent recovery results of the sensor in commercial H2O2 containing lens solutions and urine samples reveal that it could be used as a good potential candidate for the real-time sensing of H2O2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karuppiah, C., Palanisamy, S. & Chen, SM. An Ultrahigh Selective and Sensitive Enzyme-Free Hydrogen Peroxide Sensor Based on Palladium Nanoparticles and Nafion-Modified Electrode. Electrocatalysis 5, 177–185 (2014). https://doi.org/10.1007/s12678-013-0180-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0180-z

Keywords

Navigation