Skip to main content
Log in

Determination of hydrogen peroxide based on calcined layered double hydroxide-modified glassy carbon electrode in flavored beverages

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 03 December 2011

Abstract

In this paper, we developed an amperometric hydrogen peroxide (H2O2) sensor based on cobalt-containing calcined layered double hydroxide (Co CLDH). The electrocatalytic activity of the Co CLDH towards the determination of H2O2 showed a fast response and high sensitivity. Moreover, the sensor exhibited good reproducibility and long-term stability. The superior electrocatalytic response to H2O2 is mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the synthesized Co CLDH. This method with good analytical performance, low cost, and straightforward preparation made this novel electrode material promising for the determination of trace H2O2 in beverages with high accuracy, demonstrating its potential for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thome-Duret V, Reach G, Gangnerau MN, Lemonnier F, Klein JC, Zhang Y, Hu Y, Wilson GS (1996) Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood. Anal Chem 68:3822–3826

    Article  CAS  Google Scholar 

  2. You T, Niwa O, Tomita M, Hirono S (2003) Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal Chem 75:2080–2085

    Article  CAS  Google Scholar 

  3. Wang J, Lin Y, Chen L (1993) Organic-phase biosensors for monitoring phenol and hydrogen peroxide in pharmaceutical antibacterial products. Analyst 118:277–280

    Article  CAS  Google Scholar 

  4. Ferapontova E, Schmengler K, Börchers T, Ruzgas T, Gorton L (2002) Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold. Biosens Bioelectron 17:953–963

    Article  CAS  Google Scholar 

  5. Kaushik A, Khan R, Solanki PR, Pandey P, Alam J, Ahmad S, Malhotra BD (2008) Iron oxide nanoparticles—chitosan composite based glucose biosensor. Biosens Bioelectro 24:676–683

    Article  CAS  Google Scholar 

  6. Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Funct Mater 15:803–809

    Article  CAS  Google Scholar 

  7. Davis J, Moorcroft MJ, Wilkins SJ, Compton RG, Cardosi MF (2000) Electrochemical detection of nitrate and nitrite at a copper modified electrode. Analyst 125:737–741

    Article  CAS  Google Scholar 

  8. Sljukic B, Banks CE, Compton RG (2006) Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett 6:1556–1558

    Article  CAS  Google Scholar 

  9. Dai ZH, Liu SH, Bao JC, Ju HX (2009) Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chem Eur J 15:4321–4326

    Article  CAS  Google Scholar 

  10. Li CL, Su Y, Zhang SW, Lv XY, Xia HL, Wang YJ (2010) An improved sensitivity nonenzymatic glucose biosensor based on a Cu x O modified electrode. Biosens Bioelectron 26:903–907

    Article  Google Scholar 

  11. Shan D, Cosnier S, Mousty C (2003) Layered double hydroxides: an attractive material for electrochemical biosensor design. Anal Chem 75:3872–3879

    Article  CAS  Google Scholar 

  12. Carpani I, Berrettoni M, Ballarin B, Giorgetti M, Scavetta E, Tonelli D (2004) Study on the intercalation of hexacyanoferrate(II) in a Ni, Al based hydrotalcite. Solid State Ionics 168:167–175

    Article  CAS  Google Scholar 

  13. Terry PA (2004) Characterization of Cr ion exchange with hydrotalcite. Chemosphere 57:541–546

    Article  CAS  Google Scholar 

  14. Scavetta E, Ballarin B, Gazzano M, Tonelli D, Duan X (2009) Electrochemical behaviour of thin films of Co/Al layered double hydroxide prepared by electrodeposition. Electrochim Acta 54:1027–1033

    Article  CAS  Google Scholar 

  15. Shao MF, Han JB, Shi WY, Wei M (2010) Layer-by-layer assembly of porphyrin/layered double hydroxide ultrathin film and its electrocatalytic behavior for H2O2. Electrochem Commun 12:1077–1080

    Article  CAS  Google Scholar 

  16. Kong XG, Zhao JW, Han JB, Zhang DY, Wei M, Duan X (2011) Fabrication of Naphthol green B/layered double hydroxide nanosheets ultrathin film and its application in electrocatalysis. Electrochim Acta 26:1123–1129

    Article  Google Scholar 

  17. Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  18. Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41:53–71

    Article  CAS  Google Scholar 

  19. Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaïm E (1996) A Reexamination of Hydrotalcite Crystal Chemistry. J Phys Chem 100:8527–8534

    Google Scholar 

  20. Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaïm E (1996) Hydrotalcite Decomposition Mechanism:  A Clue to the Structure and Reactivity of Spinel-like Mixed Oxides. J Phys Chem 100:8535–8542

    Article  CAS  Google Scholar 

  21. Cantú M, López-Salinas E, Valente JS, Montiel R (2005) SO x removal by calcined MgAlFe hydrotalcite-like materials: effect of the chemical composition and the cerium incorporation method. Environ Sci Technol 39:9715–9720

    Article  Google Scholar 

  22. Cui L, Yin HS, Dong J, Fan H, Liu T, Ju P, Ai SY (2010) A mimic peroxidase biosensor based on calcined layered double hydroxide for detection of H2O2. Biosens Bioelectron 26:3278–3283

    Article  Google Scholar 

  23. Kannan S, Swamy CS (1999) Catalytic decomposition of nitrous oxide over calcined cobalt aluminum hydrotalcites. Catal Today 53:725–737

    Article  CAS  Google Scholar 

  24. Pérez-Ramírez J, Kapteijn F, Moulijn JA (1999) High activity and stability of the Rh-free Co-based ex-hydrotalcite containing Pd in the catalytic decomposition of N2O. Catal Lett 60:133–138

    Article  Google Scholar 

  25. Chmielarz L, Kuśtrowski P, Rafalska-Łasocha A, Majda D, Dziembaj R (2002) Catalytic activity of Co–Mg–Al, Cu–Mg–Al and Cu–Co–Mg–Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia. Appl Catal B: Environmental 35:195–210

    Article  CAS  Google Scholar 

  26. Gennequin C, Kouassi S, Tidahy L, Cousin R, Lamonier JF, Garcon G, Shirali P, Cazier F, Aboukaïs A, Siffert S (2010) Co–Mg–Al oxides issued of hydrotalcite precursors for total oxidation of volatile organic compounds. Identification and toxicological impact of the by-products. C R Chimie 13:494–501

    Article  CAS  Google Scholar 

  27. Tichit D, Bennani MN, Figueras F, Ruiz JR (1998) Decomposition processes and characterization of the surface basicity of Cl and CO 2−3 hydrotalcites. Langmuir 14:2086–2091

    Article  CAS  Google Scholar 

  28. Zhang L, Dong SJ (2004) The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J Electroanal Chem 568:189–194

    Article  CAS  Google Scholar 

  29. Andriex CP, Saveant JM (1978) Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93:163–168

    Article  Google Scholar 

  30. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 201075078) and the Natural Science Foundation of Shandong Province, China (ZR2010BM05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyun Ai.

Additional information

Jun Wang and Lin Cui equally contributed to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10008-011-1599-x.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1S

Comparison of the developed H2O2 sensors. (DOCX 24 kb)

Fig. 1S

Plot of reduction peak potential versus the natural logarithm of scan rate (ln ν). (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Cui, L., Yin, H. et al. Determination of hydrogen peroxide based on calcined layered double hydroxide-modified glassy carbon electrode in flavored beverages. J Solid State Electrochem 16, 1545–1550 (2012). https://doi.org/10.1007/s10008-011-1551-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1551-0

Keywords

Navigation