Skip to main content
Log in

Electrochemical Growth of Surface Oxides on Nickel. Part 1: Formation of α-Ni(OH)2 in Relation to the Polarization Potential, Polarization Time, and Temperature

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electro-oxidation of Ni(poly) in 0.5 M aqueous KOH solution at various polarization potentials (E p) up to 0.5 V vs. reversible hydrogen electrode, for polarization times (t p) up to 2 h, and at 285 ≤ T ≤ 318 K leads to the formation of a thin layer of α-Ni(OH)2. Interfacial capacitance measurements show that the Ni(poly) electrode covered with a layer of α-Ni(OH)2 can be completely reduced back to its metallic state by applying a negative-going potential scan with a lower potential limit of −0.2 V. An increase of E p, t p, and/or T results in an increase of the thickness of the α-Ni(OH)2 layer, which, however, never exceeds two monolayers. The electrochemical formation of α-Ni(OH)2 follows a direct logarithmic growth kinetic law. The results reported in this contribution and their interpretation imply that other oxide growth theories, such as the Langmuir-type adsorption, the point defect model, the electron tunneling, or the nucleation-and-growth model, are not applicable to the growth of α-Ni(OH)2. The potentiostatic growth of α-Ni(OH)2 on Ni(poly) is successfully treated by applying the interfacial place-exchange mechanism and the associated kinetic law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Trasatti (ed.), Electrodes of Conductive Metallic Oxides. Part A. Studies in Physical and Theoretical Chemistry (Elsevier, Amsterdam, 1980)

    Google Scholar 

  2. M. Fleischmann, K. Korinek, D. Pletcher, J. Chem. Soc. Perkin Trans. II 10, 1396 (1972)

    Article  Google Scholar 

  3. J. Kleperis, G. Wójcik, A. Czerwiński, J. Skowroński, M. Kopczyk, M. Bełtowska-Brzezińska, J. Solid State Electrochem. 5, 229 (2001)

    Article  CAS  Google Scholar 

  4. J. Desilvestro, O. Haas, J. Electrochem. Soc. 137, 5C (1990)

    Article  CAS  Google Scholar 

  5. H. Wendt, G. Imarisio, J. Appl. Electrochem. 18, 1 (1988)

    Article  CAS  Google Scholar 

  6. J.M. Skowroński, A. Ważny, J. Solid State Electrochem. 9, 890 (2005)

    Article  Google Scholar 

  7. S.P. Jiamg, S.H. Chan, J. Mat. Sci. 39, 4405 (2004)

    Article  Google Scholar 

  8. W.C. Dautremont-Smith, Displays 3, 67 (1982)

    Article  CAS  Google Scholar 

  9. S.H. Lee, C.E. Tracy, J.R. Pitts, Electrochem. Solid State Letters 7, A299 (2004)

    Article  CAS  Google Scholar 

  10. A. Lasia, A. Rami, J. Electroanal. Chem. 294, 123 (1990)

    Article  CAS  Google Scholar 

  11. B.E. Conway, T. Liu, J. Chem. Soc., Faraday Trans. I 83, 1063 (1987)

    Article  CAS  Google Scholar 

  12. S. Maximovitch, R. Durand, J. Electroanal. Chem. 149, 273 (1983)

    Article  CAS  Google Scholar 

  13. R. Sandoval, R. Schrebler, H. Gómez, J. Electroanal. Chem. 210, 287 (1986)

    Article  CAS  Google Scholar 

  14. C.A. Melendres, M. Pankuch, J. Electroanal. Chem. 333, 103 (1992)

    Article  CAS  Google Scholar 

  15. A. Seghiouer, J. Chevalet, A. Barhoun, F. Lantelme, J. Electroanal. Chem. 442, 113 (1998)

    Article  CAS  Google Scholar 

  16. F. Hahn, D. Floner, B. Beden, C. Lamy, Electrochim. Acta 32, 1631 (1987)

    Article  CAS  Google Scholar 

  17. R.J. Smith, R.E. Hummel, J.R. Ambrose, Corros. Sci. 27, 815 (1987)

    Article  CAS  Google Scholar 

  18. L.M.M. de Souza, F.P. Kong, F.R. McLarmont, R.H. Muller, Electrochim. Acta 42, 1253 (1997)

    Article  Google Scholar 

  19. Z.I. Kudriavceva, V.A. Openkin, N.A. Zhuchkova, E.I. Khrushcheva, N.A. Shutilova, Elektrokhimiya 11, 1392 (1975)

    Google Scholar 

  20. H.W. Hoppe, H.H. Strehblow, Surf. Interf. Anal. 14, 121 (1989)

    Article  CAS  Google Scholar 

  21. S.L. Yau, F.R.F. Fan, T.P. Moffat, A.J. Bard, J. Phys. Chem. 98, 5493 (1994)

    Article  CAS  Google Scholar 

  22. A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, J. Solid State Electrochem. 9, 337 (2005)

    Article  CAS  Google Scholar 

  23. A.G. Pshenichnikov, L.A. Burkal'tseva, Z.I. Kudryavtseva, Electrochim. Acta 45, 4143 (2000)

    Article  CAS  Google Scholar 

  24. J. Nan, Y. Yang, Z. Lin, Electrochim. Acta 51, 4873 (2006)

    Article  CAS  Google Scholar 

  25. M. Grdeń, K. Klimek, J. Electroanal. Chem. 581, 122 (2005)

    Article  Google Scholar 

  26. W. Paik, Z. Szklarska-Smialowska, Surf. Sci. 96, 401 (1980)

    Article  CAS  Google Scholar 

  27. A.A. Wronkowska, Surf. Sci. 214, 507 (1989)

    Article  CAS  Google Scholar 

  28. G. Larramona, C. Gutiérrez, J. Electrochem. Soc. 137, 428 (1990)

    Article  CAS  Google Scholar 

  29. M.J. Madou, M.C.H. McKubre, J. Electrochem. Soc. 130, 1056 (1983)

    Article  CAS  Google Scholar 

  30. A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, J. Electrochem. Soc. 153, B453 (2006)

    Article  CAS  Google Scholar 

  31. A. Seyeux, V. Maurice, L.H. Klein, P. Marcus, Electrochim. Acta 54, 540 (2008)

    Article  CAS  Google Scholar 

  32. R. Simpraga, B.E. Conway, J. Electroanal. Chem. 280, 341 (1990)

    Article  CAS  Google Scholar 

  33. M. Grdeń, K. Klimek, A. Czerwiński, J. Solid State Electrochem. 8, 390 (2004)

    Article  Google Scholar 

  34. D.V. Sokolskii, B.Y. Nogerbekov, N.N. Gudeleva, R.G. Mustafina, Elektrokhimiya 22, 1114 (1986)

    Google Scholar 

  35. H.W. Hoppe, H.H. Strehblow, Corr. Sci. 31, 167 (1990)

    Article  CAS  Google Scholar 

  36. P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, A. de Guibert, J. Power Sources 8, 229 (1982)

    Article  CAS  Google Scholar 

  37. C.V. D’Alkaine, M.A. Santanna, J. Electroanal. Chem. 457, 5 (1998)

    Article  Google Scholar 

  38. W. Visscher, E. Barendrecht, Electrochim. Acta 25, 651 (1980)

    Article  CAS  Google Scholar 

  39. H. Bode, K. Dehmelt, J. Witte, Electrochim. Acta 11, 1079 (1966)

    Article  CAS  Google Scholar 

  40. R.S. McEwen, J. Phys. Chem. 76, 1782 (1971)

    Article  Google Scholar 

  41. G. Barral, F. Njanjo-Eyoke, S. Maximovitch, Electrochim. Acta 40, 2815 (1995)

    Article  CAS  Google Scholar 

  42. H.J. Jang, C.J. Park, H.S. Kwon, Electrochim. Acta 50, 3503 (2005)

    Article  CAS  Google Scholar 

  43. D.A. Bonnell, Prog. Surf. Sci. 57, 187 (1998)

    Article  CAS  Google Scholar 

  44. C. Zhang, S.M. Park, J. Electrochem. Soc. 136, 3333 (1989)

    Article  CAS  Google Scholar 

  45. J.F. Wolf, L.S.R. Yeh, A. Damjanovic, Electrochim. Acta 26, 811 (1981)

    Article  CAS  Google Scholar 

  46. H. Angerstein-Kozlowska, B.E. Conway, W.B.A. Sharp, J. Electroanal. Chem. 43, 9 (1973)

    Article  CAS  Google Scholar 

  47. B.E. Conway, W.B.A. Sharp, H. Angerstein-Kozlowska, E.E. Criddle, Anal. Chem. 45, 1331 (1973)

    Article  CAS  Google Scholar 

  48. S.A.S. Machado, L.A. Avaca, Electrochim. Acta 39, 1385 (1994)

    Article  CAS  Google Scholar 

  49. B.A. Boukamp, Solid State Ionics 20, 31 (1986)

    Article  CAS  Google Scholar 

  50. R.D. Armstrong, M. Henderson, J. Electroanal. Chem. 39, 81 (1972)

    Article  CAS  Google Scholar 

  51. D.A. Harrington, B.E. Conway, Electrochim. Acta 32, 1703 (1987)

    Article  CAS  Google Scholar 

  52. G.J. Brug, A.L.G. Van Den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. 176, 275 (1984)

    Article  CAS  Google Scholar 

  53. E. Navarro-Flores, S. Omanovic, J. Mol. Catal. A: Chemical 242, 182 (2005)

    Article  CAS  Google Scholar 

  54. P. Zoltowski, Electrochim. Acta 38, 2129 (1993)

    Article  CAS  Google Scholar 

  55. S. Trasatti, O.A. Petrii, Pure Appl. Chem. 63, 711 (1991)

    Article  CAS  Google Scholar 

  56. M. Dmochowska, A. Czerwiński, J. Solid State Electrochem. 2, 16 (1998)

    Article  CAS  Google Scholar 

  57. D. Floner, C. Lamy, J.M. Leger, Surf. Sci. 234, 87 (1990)

    Article  CAS  Google Scholar 

  58. S. Srinivasan, E. Gileadi, Electrochim. Acta 11, 321 (1966)

    Article  CAS  Google Scholar 

  59. B. Scharifker, G. Hills, Electrochim. Acta 28, 879 (1983)

    Article  CAS  Google Scholar 

  60. R. Philipp, U. Retter, Electrochim. Acta 40, 1581–1585 (1995)

    Article  CAS  Google Scholar 

  61. D.D. MacDonald, Transient Techniques in Electrochemistry (Plenum, New York, 1977)

    Book  Google Scholar 

  62. S. Maximovitch, Electrochim. Acta 41, 2761 (1996)

    Article  CAS  Google Scholar 

  63. W.P. Gomes, D. Vanmaekelbergh, Electrochim. Acta 41, 967 (1996)

    Article  CAS  Google Scholar 

  64. V.A. Myamlin, Yu.V. Pleskov, Electrochemistry of Semiconductors (Plenum, New York, 1967)

    Google Scholar 

  65. K. Darowicki, S. Krakowiak, P. Ślepski, Electrochim. Acta 51, 2204 (2006)

    Article  CAS  Google Scholar 

  66. G. Barral, S. Maximovitch, F. Njanjo-Eyoke, Electrochim. Acta 41, 1305 (1996)

    Article  CAS  Google Scholar 

  67. W.P. Gomes, F. Cardon, Prog. Surf. Sci. 12, 155 (1982)

    Article  CAS  Google Scholar 

  68. A. di Paola, Electrochim. Acta 34, 203 (1989)

    Article  Google Scholar 

  69. M.J. Madou, F. Cardon, W.P. Gomes, J. Electrochem. Soc. 124, 1623 (1977)

    Article  CAS  Google Scholar 

  70. H.S. Jarret, J. Electroanal. Chem. 150, 629 (1983)

    Article  Google Scholar 

  71. M. Boinet, S. Maximovitch, F. Dalard, O. de Bouvier, J. Mat. Sci. 38, 4041 (2003)

    Article  CAS  Google Scholar 

  72. M.H. Dean, U. Stimming, Corr. Sci. 29, 199 (1989)

    Article  CAS  Google Scholar 

  73. H. Uhlig, J. Pickett, J. MacNairn, Acta Met. 7, 111 (1959)

    Article  CAS  Google Scholar 

  74. H.H. Uhlig, Acta Met. 4, 541 (1956)

    Article  CAS  Google Scholar 

  75. H.P. Rooksby, Acta Cryst. 1, 226 (1948)

    Article  CAS  Google Scholar 

  76. T. Eto, S. Endo, M. Imai, Y. Katayama, T. Kikegawa, Phys. Rev. B 61, 14984 (2000)

    Article  CAS  Google Scholar 

  77. A. Delahaye-Vidal, B. Beaudoin, N. Sac-Epée, K. Tekaia-Elhsissen, A. Audemer, M. Figlarz, Solid State Ionics 84, 239 (1996)

    Article  CAS  Google Scholar 

  78. S.I. Pyun, M.H. Hong, Electrochim. Acta 37, 327 (1992)

    Article  CAS  Google Scholar 

  79. C.Y. Chao, L.F. Lin, D.D. Macdonald, J. Electrochem. Soc. 128, 1187 (1981)

    Article  CAS  Google Scholar 

  80. A.T. Fromhold Jr., J. Phys. Chem. Solids 24, 1309 (1963)

    Article  CAS  Google Scholar 

  81. D. Gilroy, J. Electroanal. Chem. 71, 257 (1976)

    Article  CAS  Google Scholar 

  82. B.E. Conway, B. Barnett, H. Angerstein-Kozlowska, B.V. Tilak, J. Chem. Phys. 93, 8361 (1990)

    Article  CAS  Google Scholar 

  83. A.T. Fromhold Jr., J. Electrochem. Soc. 153, B97 (2006)

    Article  CAS  Google Scholar 

  84. A.T. Fromhold Jr., E.J. Cook, Phys. Rev. 158, 600 (1967)

    Article  CAS  Google Scholar 

  85. W. Schmickler, J. Electroanal. Chem. 84, 203 (1977)

    Article  CAS  Google Scholar 

  86. R. Philipp, J. Dittrich, U. Retter, E. Müller, J. Electroanal. Chem. 250, 159 (1988)

    Article  CAS  Google Scholar 

  87. B.E. Conway, G. Jerkiewicz, J. Electroanal. Chem. 339, 123 (1992)

    Article  CAS  Google Scholar 

  88. G. Tremiliosi-Filho, L.H. Dall'Antonia, G. Jerkiewicz, J. Electroanal. Chem. 578, 1 (2005)

    Article  CAS  Google Scholar 

  89. L.H. Dall'Antonia, G. Tremiliosi-Filho, G. Jerkiewicz, J. Electroanal. Chem. 502, 72 (2001)

    Article  Google Scholar 

  90. M. Alsabet, M. Grdeń, G. Jerkiewicz, J. Electroanal. Chem. 589, 120 (2006)

    Article  CAS  Google Scholar 

  91. T.V. Blank, Y.A. Goldberg, Semiconductors 41, 1263 (2007)

    Article  CAS  Google Scholar 

  92. N.W. Grimes, R.W. Grimes, J. Phys.: Condens. Matter 9, 6737 (1997)

    Article  CAS  Google Scholar 

  93. D. R. Lide (ed.) CRC Handbook of Chemistry and Physics (CRC, Boca Raton, 1995)

Download references

Acknowledgments

We acknowledge financial support from the NSERC of Canada and Queen’s University, and on-going collaboration with VALE (formerly Vale-Inco). M. Alsabet thanks Kuwait University for a graduate fellowship. M. Grden acknowledges a leave of absence from Warsaw University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Jerkiewicz.

Appendix

Appendix

In the manuscript, we discuss the dependence of the slope of q ox vs. log t p plots on E p and assign it to the change in the structure of the Ni(OH)2 oxide layer. Here, we justify why this dependence cannot be the result of (a) a variation in the μ value as the electric field changes or (b) a change in the structure of the electrode–electrolyte interface.

With regards to (a), at a first glance, the dependency of the slope of q ox vs. log t p relationships on E p could be the result of a variation in the dipole moment induced by varying the value of E el, which is related to E p. This proposal is examined by the following simple calculations. We assume that the strength of the electric field within the oxide/hydroxide film is of the order of 108 V m–1 for a potential drop of 0.1 V [88, 90] and that the value of NiO polarizability volume (α′) is ca. 4 Å3 [92]. Although we did not found any polarizability data for NiOH, we can assume that its value is similar to that of NiO. Thus, we can apply a simplified formula to estimate the influence of changes in the electric field on the induced dipole moment (μ ind) using Eq. 9

$$ {\mu_{\text{ind}}} = 1.1126 \times {10^{{ - 16}}}\alpha \prime \Delta {E_{\text{el}}} $$
(9)

where ΔE el is the change in electric field, related to the change in the electrode potential. The factor 1.1126 × 10–16 contains the vacuum dielectric permittivity and π [93]. Thus, for a potential difference of 0.1 V, we expect ΔE el to be of the order of 108 V m–1 [88, 90]. After introducing this value into Eq. 9, we obtain a change of the dipole moment of the order of 10–3 D. Assuming that in the case of Ni electro-oxidation the dipole moment calculated using Eq. 3 is of the order of μ = 1.17–1.56 D (see the main body of the manuscript), the value of μ ind is insignificant and cannot explain 6–48% changes in the slope of the q ox vs. log t p relationships.

With regards to (b), in the case of formation of oxide layers on Au and Pt electrodes, Conway et al. [82] suggested, but never proved, that the slope of the q ox vs. log t p relationships could depend on E p in the very initial stages of electro-oxidation. They attributed this effect to simultaneously occurring surface processes, such as anion adsorption. The surface coverage of the electrode with various adsorbed species such as water and/or hydroxyl anions is expected to be potential dependent. Thus, various arrangements of adsorbed species at different potential values could influence the structure of surface oxide/hydroxide layer and result in the potential dependence of the q ox vs. log t p relationships. However, the potential dependent H2O/OH surface coverage could affect the slope of the q ox vs. log t p plots, thus changing the surface area (A in Eq. 3) available for the formation of Ni(OH)2. On the remaining, uncovered surface, the oxidation would have to follow H2O/OH adsorption, therefore resulting only in a slightly different slope of the q ox vs. log t p relationships on E p, which is not the case. It is worthwhile adding that the adsorption of K+ cations originating from the electrolyte was considered not to have any significant influence on the Ni electro-oxidation [25].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alsabet, M., Grden, M. & Jerkiewicz, G. Electrochemical Growth of Surface Oxides on Nickel. Part 1: Formation of α-Ni(OH)2 in Relation to the Polarization Potential, Polarization Time, and Temperature. Electrocatal 2, 317–330 (2011). https://doi.org/10.1007/s12678-011-0067-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-011-0067-9

Keywords

Navigation