Skip to main content

Advertisement

Log in

A multi-stage stochastic programming model for adaptive biomass processing operation under uncertainty

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Variations of physical and chemical characteristics of biomass reduce equipment utilization and increase operational costs of biomass processing. Biomass processing facilities use sensors to monitor the changes in biomass characteristics. Integrating sensory data into the operational decisions in biomass processing will increase its flexibility to the changing biomass conditions. In this paper, we propose a multi-stage stochastic programming model that minimizes the expected operational costs by identifying the inventory level and creating an operational decision policy for equipment speed settings. These policies take the sensory information data and the current biomass inventory level as inputs to dynamically adjust inventory levels and equipment settings according to the changes in the biomass’ characteristics. We ensure that a prescribed target reactor utilization is consistently achieved by penalizing the violation of the target reactor feeding rate. A case study is developed using real-world data collected at Idaho National Laboratory’s biomass processing facility. We show the value of multi-stage stochastic programming from an extensive computational experiment. Our sensitivity analysis indicates that updating the infeed rate of the system, the processing speed of equipment, and bale sequencing based on the moisture level of biomass improves the processing rate of the reactor and reduces operating costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frank, A.G., Dalenogare, L.S., Ayala, N.F.: Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 210, 15–26 (2019). https://doi.org/10.1016/j.ijpe.2019.01.004

    Article  Google Scholar 

  2. Dalenogare, L.S., Benitez, G.B., Ayala, N.F., Frank, A.G.: The expected contribution of industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 204, 383–394 (2018). https://doi.org/10.1016/j.ijpe.2018.08.019

    Article  Google Scholar 

  3. Snetterton Renewable Energy Plant: Behind the project. https://www.snettertonbiomass.com/behind-the-project/. Accessed: 2021-06-25 (2015)

  4. Birge, J.R.: Aggregation bounds in stochastic linear programming. Math. Progr. 31(1), 25–41 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Domac, J., Richards, K., Risovic, S.: Socio-economic drivers in implementing bioenergy projects. Biomass Bioenerg. 28(2), 97–106 (2005). https://doi.org/10.1016/j.biombioe.2004.08.002

    Article  Google Scholar 

  6. Sims, R.: Bioenergy to mitigate for climate change and meet the needs of society, the economy and the environment. Mitig. Adapt. Strat. Glob. Change 8(4), 349–370 (2003)

    Article  Google Scholar 

  7. You, F., Tao, L., Graziano, D.J., Snyder, S.W.: Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. AIChE Journal 58(4), 1157–1180 (2012) https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.12637. https://doi.org/10.1002/aic.12637

  8. Bhattacharya, A., Kharoufeh, J.P., Zeng, B.: Managing energy storage in microgrids: A multistage stochastic programming approach. IEEE Trans. Smart Grid 9(1), 483–496 (2018)

    Article  Google Scholar 

  9. de Matos, V.L., Morton, D., Finardi, E.C.: Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling. Ann. Oper. Res. 253(2), 713–731 (2017). https://doi.org/10.1007/s10479-016-2107-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruno, S., Ahmed, S., Shapiro, A., Street, A.: Risk neutral and risk averse approaches to multistage renewable investment planning under uncertainty. Eur. J. Oper. Res. 250(3), 979–989 (2016). https://doi.org/10.1016/j.ejor.2015.10.013

    Article  MathSciNet  MATH  Google Scholar 

  11. Siddig, M., Song, Y.: Adaptive partition-based sddp algorithms for multistage stochastic linear programming with fixed recourse. Comput. Optim. Appl. 81(1), 201–250 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cariño, D.R., Kent, T., Myers, D.H., Stacy, C., Sylvanus, M., Turner, A.L., Watanabe, K., Ziemba, W.T.: The russell-yasuda kasai model: An asset/liability model for a japanese insurance company using multistage stochastic programming. INFORMS J. Appl. Anal. 24(1), 29–49 (1994). https://doi.org/10.1287/inte.24.1.29

    Article  MATH  Google Scholar 

  13. Steinbach, M.C.: Recursive direct algorithms for multistage stochastic programs in financial engineering. In: Operations Research Proceedings 1998, pp. 241–250. Springer, Berlin (1999)

    Chapter  Google Scholar 

  14. Gulpinar, N., Rustem, B., Settergren, R.: Multistage stochastic programming in computational finance. In: Computational Methods in Decision-Making, Economics and Finance, pp. 35–47. Springer, Berlin (2002)

    Chapter  MATH  Google Scholar 

  15. Dupačová, J.: Portfolio Optimization and Risk Management Via Stochastic Programming. Osaka University Publishing Co., Osaka (2009)

    Google Scholar 

  16. Ahmed, S., Sahinidis, N.V.: An approximation scheme for stochastic integer programs arising in capacity expansion. Oper. Res. 51(3), 461–471 (2003). https://doi.org/10.1287/opre.51.3.461.14960

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, Z., Li, S., Tirupati, D.: A scenario-based stochastic programming approach for technology and capacity planning. Comput. Oper. Res. 29(7), 781–806 (2002). https://doi.org/10.1016/S0305-0548(00)00076-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Gupta, V., Grossmann, I.E.: Multistage stochastic programming approach for offshore oilfield infrastructure planning under production sharing agreements and endogenous uncertainties. J. Petrol. Sci. Eng. 124, 180–197 (2014). https://doi.org/10.1016/j.petrol.2014.10.006

    Article  Google Scholar 

  19. Singh, K.J., Philpott, A.B., Wood, R.K.: Dantzig-wolfe decomposition for solving multistage stochastic capacity-planning problems. Oper. Res. 57(5), 1271–1286 (2009). https://doi.org/10.1287/opre.1080.0678

    Article  MathSciNet  MATH  Google Scholar 

  20. Alonso, A., Escudero, L.F., Teresa Ortuño, M.: A stochastic 0–1 program based approach for the air traffic flow management problem. Eur. J. Oper. Res. 120(1), 47–62 (2000). https://doi.org/10.1016/S0377-2217(98)00381-6

    Article  MATH  Google Scholar 

  21. Herer, Y.T., Tzur, M., Yücesan, E.: The multilocation transshipment problem. IIE Trans. 38(3), 185–200 (2006). https://doi.org/10.1080/07408170500434539

    Article  Google Scholar 

  22. Möller, A., Römisch, W., Weber, K.: Airline network revenue management by multistage stochastic programming. CMS 5(4), 355–377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (2011)

    Book  MATH  Google Scholar 

  24. Shapiro, A., Nemirovski, A.: On Complexity of Stochastic Programming Problems, pp. 111–146. Springer, Boston (2005). https://doi.org/10.1007/0-387-26771-9_4

    Book  MATH  Google Scholar 

  25. Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res. 33(5), 989–1007 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(2), 359–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shapiro, A.: Analysis of stochastic dual dynamic programming method. Eur. J. Oper. Res. 209, 63–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Powell, W.B.: A unified framework for stochastic optimization. Eur. J. Oper. Res. 275(3), 795–821 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, K., Ahmed, S.: The value of multistage stochastic programming in capacity planning under uncertainty. Oper. Res. 57(4), 893–904 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xie, F., Huang, Y.: A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties. Transp. Res. Part E: Logist. Transp. Rev. 111, 130–148 (2018). https://doi.org/10.1016/j.tre.2018.01.015

    Article  Google Scholar 

  31. Mahmutoǧullar, A.I., Ahmed, S., Çavuş, Ö., Aktürk, M.S.: The value of multi-stage stochastic programming in risk-averse unit commitment under uncertainty. IEEE Trans. Power Syst. 34(5), 3667–3676 (2019). https://doi.org/10.1109/TPWRS.2019.2902511

    Article  Google Scholar 

  32. Crawford, N., Nagle, N., Sievers, D., Stickel, J.: The effects of physical and chemical preprocessing on the flowability of corn stover. Biomass Bioenerg. 85, 126–134 (2016). https://doi.org/10.1016/j.biombioe.2015.12.015

    Article  Google Scholar 

  33. Dai, J., Cui, H., Grace, J.R.: Biomass feeding for thermochemical reactors. Prog. Energy Combust. Sci. 38(5), 716–736 (2012). https://doi.org/10.1016/j.pecs.2012.04.002

    Article  Google Scholar 

  34. Jacobson, J.J., Lamers, P., Roni, M.S., Cafferty, K.G., Kenney, K.L., Heath, B.M., Hansen, J.K.: Techno-economic analysis of a biomass depot. Technical report, Idaho National Lab. (INL), Idaho Falls, ID (U.S.) (October 2014). https://doi.org/10.2172/1369631

  35. Kenney, K.L., Cafferty, K.G., Jacobson, J.J., Bonner, I.J., Gresham, G.L., Hess, J.R., Smith, W.A., Thompson, D.N., Thompson, V.S., Tumuluru, J.S., Yancey, N.: Feedstock supply system design and economics for conversion of lignocellulosic biomass to hydrocarbon fuels conversion pathway: Fast pyrolysis and hydrotreating bio-oil pathway "the 2017 design case". Technical report, Idaho National Lab. (INL), Idaho Falls, ID (U.S.) (January 2014). https://doi.org/10.2172/1133890

  36. Yancey, N., Tumuluru, J.S.: Size reduction, drying and densification of high moisture biomass. Quarterly Progress Report. Idaho Fall, Idaho, USA: Idaho National Laboratory (2015)

  37. Numbi, B.P., Xia, X.: Optimal energy control of a crushing process based on vertical shaft impactor. Appl. Energy 162, 1653–1661 (2016). https://doi.org/10.1016/j.apenergy.2014.12.017

    Article  Google Scholar 

  38. Zhang, S., Xia, X.: Optimal control of operation efficiency of belt conveyor systems. Appl. Energy 87(6), 1929–1937 (2010). https://doi.org/10.1016/j.apenergy.2010.01.006

    Article  Google Scholar 

  39. Pham, V., El-Halwagi, M.: Process synthesis and optimization of biorefinery configurations. AIChE J. 58(4), 1212–1221 (2012) https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.12640. https://doi.org/10.1002/aic.12640

  40. Zondervan, E., Nawaz, M., de Haan, A.B., Woodley, J.M., Gani, R.: Optimal design of a multi-product biorefinery system. Comput. Chem. Eng. 35(9), 1752–1766 (2011). https://doi.org/10.1016/j.compchemeng.2011.01.042

    Article  Google Scholar 

  41. Gulcan, B., Eksioglu, S.D., Song, Y., Roni, M., Chen, Q.: Optimization models for integrated biorefinery operations. Optim. Lett. (2021). https://doi.org/10.1007/s11590-021-01767-4

    Article  MATH  Google Scholar 

  42. Zhou, B., Ileleji, K., Ejeta, G.: Physical property relationships of bulk corn stover particles. Trans. ASABE 51, 581–590 (2008). https://doi.org/10.13031/2013.24358

    Article  Google Scholar 

  43. Dowson, O., Kapelevich, L.: SDDP.jl: a Julia package for stochastic dual dynamic programming. INFORMS Journal on Computing (2020). https://doi.org/10.1287/ijoc.2020.0987. Articles in Advance

  44. Dunning, I., Huchette, J., Lubin, M.: JuMP: A modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017). https://doi.org/10.1137/15M1020575

    Article  MathSciNet  MATH  Google Scholar 

  45. Hansen, J.K., Roni, M.S., Nair, S.K., Hartley, D.S., Griffel, L.M., Vazhnik, V., Mamun, S.: Setting a baseline for integrated landscape design: Cost and risk assessment in herbaceous feedstock supply chains. Biomass Bioenerg. 130, 105388 (2019). https://doi.org/10.1016/j.biombioe.2019.105388

    Article  Google Scholar 

  46. Guo, Y., Chen, Q., Xia, Y., Westover, T., Eksioglu, S.D., Roni, M.: Discrete element modeling of switchgrass particles under compression and rotational shear. Biomass Bioenerg. 141, 105649 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office under award number DEEE0008255 and Department of Energy Idaho Operations Office Contract No. DE-AC07-05ID14517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjia Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A detailed mathematical notation and formulation

1.1 A.1 Detailed mathematical notation

See Table 11.

Table 11 Detailed mathematical notation

1.2 A.2 Optimization problem to be solved in each stage t: detailed formulation

We provide a detailed formulation for the optimization problem to be solved in each stage t below. This formulation corresponds to the generic formulation (2) presented in the main body of the paper.

$$\begin{aligned} Q_t({\textbf{I}}_{t-1},{\tilde{m}}_t):= \min \ {}&\sum _{i \in \textbf{E}^m}{\textbf{c}}^{h \top } I_{it} + c^pp_t + {\mathcal {Q}}_{t+1}({\textbf{I}}_{t}) \end{aligned}$$
(A1a)
$$\begin{aligned} \text {s.t. } & X_{0} = \gamma _{0} d_{0}({\tilde{m}}_t), \end{aligned}$$
(A1b)
$$\begin{aligned} & { X_{it} = (1-\phi _i-\varphi _{i,\kappa _t})\sum _{j \in \varvec{\delta _i^-}}X_{jt}} , \ \forall i \in \textbf{E}^p, \end{aligned}$$
(A1c)
$$\begin{aligned} & {X_{its} \le \gamma _{i}d_{it}({\tilde{m}}_t)\frac{l_0}{v_{1,\kappa _t}} V_{it}}, \ \forall i \in \textbf{E}^r, \end{aligned}$$
(A1d)
$$\begin{aligned} & X_{it} = \sum _{j \in \varvec{\delta _i^-}}X_{jt}, \ \forall i \in \textbf{E}^r \setminus \{i_{b1}, (i_{b2})\}, \end{aligned}$$
(A1e)
$$\begin{aligned} & { X_{i_{b1},t} = (1-\theta _{\kappa _t}) X_{i_b,t}}, \end{aligned}$$
(A1f)
$$\begin{aligned} & { X_{(i_{b2}),t} = \theta _{\kappa _t} X_{i_b,t}}, \end{aligned}$$
(A1g)
$$\begin{aligned} & { X_{it} = \gamma _{i}d_{it}({\tilde{m}}_t)\frac{l_0}{v_{1,\kappa _t}V_{it}}}, \ \forall i \in \textbf{E}^m, \end{aligned}$$
(A1h)
$$\begin{aligned} & I_{i1} = I_{i0} + \sum _{j \in \varvec{\delta _i^-}}X_{j1}-\sum _{l \in \delta _i^-} X_{i1}, \ \forall i \in \textbf{E}^m, \end{aligned}$$
(A1i)
$$\begin{aligned} & I_{it} = I_{i(t-1)} + \sum _{j \in \varvec{\delta _i^-}}X_{jt} -\sum _{l \in \delta _i^-} X_{it}, \ \forall i \in \textbf{E}^m, \end{aligned}$$
(A1j)
$$\begin{aligned} & { (1-{\tilde{m}}_{t})X_{it} \le {\bar{x}}_{i,\kappa _t}}, \ \forall i \in \textbf{E}^p, \end{aligned}$$
(A1k)
$$\begin{aligned} & (1- {\tilde{m}}_{t}) X_{i_r,t} \le {\overline{r}}, \end{aligned}$$
(A1l)
$$\begin{aligned} & p_t \ge r - X_{i_r,t}, \end{aligned}$$
(A1m)
$$\begin{aligned} & { 0 \le V_{it} \le {\bar{v}}_{i,\kappa _t}}, \ \forall i \in \mathbf{N \setminus \{ 1 \}}, \end{aligned}$$
(A1n)
$$\begin{aligned} & { 0 \le I_{it} \le {\bar{\iota }}({\tilde{m}}_t)}, \ \forall i \in \textbf{E}^m, \end{aligned}$$
(A1o)
$$\begin{aligned} & X_{0t}, X_{it} \ge 0, \ \forall i \in \textbf{N}, \end{aligned}$$
(A1p)
$$\begin{aligned} & p_t \ge 0. \end{aligned}$$
(A1q)

We explain the constraints in formulation (A1) and describe how they link to the general formulation (2) in the main document as follows:

  • The objective (A1a) is to minimize the expected total inventory holding cost and the expected penalty of not achieving the target reactor feeding rate r. The latter objective helps ensure consistently high reactor utilization, as the reactor is the most expensive equipment in the biorefinery.

  • Constraints (A1b), (A1c) and (A1h) represent the flow calculations for processing and storage equipment. These constraints correspond to constraints (2c) in the succinct, general formulation (2) in the main document. For example, constraints (A1c) calculate the biomass flow with respect to the moisture and dry matter losses during the grinding and pelleting processes.

  • Constraint (A1b) represents the amount of biomass entering the system in stage t. It is calculated by multiplying the volume of the biomass bale and wet biomass density. Biomass wet density depends on the moisture content, \({\tilde{m}}_t\).

  • Processing and transportation equipment, and the reactor have limits on the amount of biomass flowing into or out of them. Constraints (A1d), (A1k) and (A1l) represent these upper limits. These constraints correspond to constraints (2d) in the succinct, general formulation (2).

  • In the transportation equipment, the biomass flowing into the equipment equals to the biomass flowing from it. Constraints (A1e), (A1f), and (A1g) represent these flow balance equations, just like constraints (2b) in the general formulation (2) in the main document.

  • Constraints (A1i) and (A1j) are the inventory balance constraints of the storage equipment \(i \in \textbf{E}^m\). They are a part of constraints (2e) in the succinct formulation (2).

  • Constraints (A1m) and (A1q) calculate the shortfall of achieving the target reactor feeding rate, which is penalized in the objective. These constraints correspond to constraints (2f) and (2f) in the succinct, general formulation (2) in the main text.

  • Constraints (A1n) and (A1o) set bounds on the processing speed of equipment and amount of inventory stored, respectively. These constraints are formulated in vector form in the general formulation (2) via constraints (2h) and (2i).

Appendix B Data tables

See Tables 12, 13, 14, 15.

Table 12 Particle size distribution percentiles
Table 13 Secondary grinder bypass ratios
Table 14 Equipment infeed rate limits
Table 15 Moisture and dry matter changes

Appendix C Regression analysis for biomass density

See Table 16.

Table 16 Regression analysis statistics

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulcan, B., Song, Y., Eksioglu, S.D. et al. A multi-stage stochastic programming model for adaptive biomass processing operation under uncertainty. Energy Syst (2022). https://doi.org/10.1007/s12667-022-00544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-022-00544-1

Keywords

Navigation