Skip to main content

Advertisement

Log in

Optimization models for integrated biorefinery operations

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Variations of physical and chemical characteristics of biomass lead to an uneven flow of biomass in a biorefinery, which reduces equipment utilization and increases operational costs. Uncertainty of biomass supply and high processing costs increase the risk of investing in the US’s cellulosic biofuel industry. We propose a stochastic programming model to streamline processes within a biorefinery. A chance constraint models system’s reliability requirement that the reactor is operating at a high utilization rate given uncertain biomass moisture content, particle size distribution, and equipment failure. The model identifies operating conditions of equipment and inventory level to maintain a continuous flow of biomass to the reactor. The sample average approximation method approximates the chance constraint and a bisection search-based heuristic solves this approximation. A case study is developed using real-life data collected at Idaho National Laboratory’s biomass processing facility. An extensive computational analysis indicates that sequencing of biomass bales based on moisture level, increasing storage capacity, and managing particle size distribution, increases utilization of the reactor and reduces operational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdelaziz, F.B.: Solution approaches for the multiobjective stochastic programming. Eur. J. Oper. Res. 216(1), 1–16 (2012)

    Article  MathSciNet  Google Scholar 

  2. Alsina, E.F., Chica, M., Trawinski, K.: On the use of machine learning methods to predict component reliability from data-driven industrial case studies. Int. J. Adv. Manuf. Technol. 94, 2419–2433 (2018)

    Article  Google Scholar 

  3. Atlason, J., Epelman, M.A., Henderson, S.G.: Optimizing call center staffing using simulation and analytic center cutting-plane methods. Manage. Sci. 54(2), 295–309 (2008)

    Article  Google Scholar 

  4. Basciftci, B., Ahmed, S., Gebraeel, N.Z., Yildirim, M.: Stochastic optimization of maintenance and operations schedules under unexpected failures. IEEE Trans. Power Syst. 33(6), 6755–6765 (2018)

    Article  Google Scholar 

  5. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)

    Article  Google Scholar 

  6. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  7. Cafferty, K., Muth, D., Jacobson, J., Bryden, K.: Model based biomass system design of feedstock supply systems for bioenergy production. 2, 08 (2013)

    Google Scholar 

  8. Charnes, Abraham, Cooper, William W., Ferguson, Robert O.: Optimal estimation of executive compensation by linear programming. Manage. Sci. 1(2), 138–151 (1955)

    Article  MathSciNet  Google Scholar 

  9. Chen, X., Önal, H.: An economic analysis of the future U.S. biofuel industry, facility location, and supply chain network. Transp. Sci. 48(4), 575–591 (2014)

  10. Coit, D.W., Zio, E.: The evolution of system reliability optimization. Reliab. Eng. Syst. Saf. 192, 106259 (2018)

    Article  Google Scholar 

  11. Crawford, N., Nagle, N., Sievers, D., Stickel, J.: The effects of physical and chemical preprocessing on the flowability of corn stover. Biomass Bioenergy 85, 126–134 (2016)

    Article  Google Scholar 

  12. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  13. Dai, J., Cui, H., Grace, J.R.: Biomass feeding for thermochemical reactors. Prog. Energy Combust. Sci. 38(5), 716–736 (2012)

    Article  Google Scholar 

  14. Domac, J., Richards, K., Risovic, S.: Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy 28(2), 97–106 (2005)

    Article  Google Scholar 

  15. Ekşioğlu, S.D., Acharya, A., Leightley, L.E., Arora, S.: Analyzing the design and management of biomass-to-biorefinery supply chain. Comput. Ind. Eng. 57(4), 1342–1352 (2009)

    Article  Google Scholar 

  16. Fyffe, D.E., Hines, W.W., Lee, N.K.: System reliability allocation and a computational algorithm. IEEE Trans. Reliab. R—-17(2), 64–69 (1968)

  17. Ghare, P.M., Taylor, R.E.: Optimal redundancy for reliability in series systems. Oper. Res. 17(5), 838–847 (1969)

    Article  MathSciNet  Google Scholar 

  18. Guo, Y., Chen, Q., Xia, Y., Westover, T., Eksioglu, S.D., Roni, M.: Discrete element modeling of switchgrass particles under compression and rotational shear. Biomass Bioenergy 141, 105649 (2020)

    Article  Google Scholar 

  19. Hansen, J.K., Roni, M.S., Nair, S.K., Hartley, D.S., Griffel, L.M., Vazhnik, V., Mamun, S.: Setting a baseline for integrated landscape design: Cost and risk assessment in herbaceous feedstock supply chains. Biomass Bioenergy 130, 105388 (2019)

    Article  Google Scholar 

  20. Höhner, D., Wirtz, S., Scherer, V.: A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method. Powder Technology 226, 16–28, 08 (2012)

  21. Jacobson, J.J., Lamers, P., Roni, M.S., Cafferty, K.G., Kenney, K.L., Heath, B.M., Hansen, J.K.: Techno-economic analysis of a biomass depot. 10,(2014)

  22. Kenney, K.L., Cafferty, K.G., Jacobson, J.J., Bonner, I.J., Gresham, G.L., Hess, J.R., Smith, W.A., Thompson, D.N., Thompson, V.S., Tumuluru, J.S., Yancey, N.: Feedstock supply system design and economics for conversion of lignocellulosic biomass to hydrocarbon fuels conversion pathway: fast pyrolysis and hydrotreating bio-oil pathway ”the 2017 design case” 1 (2014)

  23. Kotz, S., van Dorp, J.R.: Beyond Beta. World Scientific, Singapore (2004)

    Book  Google Scholar 

  24. Li, P., Arellano-Garcia, H., Wozny, G.: Chance constrained programming approach to process optimization under uncertainty. Comput. Chem. Eng.; 32(1):25–45. Process Systems Engineering: Contributions on the State-of-the-Art (2008)

  25. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008)

    Article  MathSciNet  Google Scholar 

  26. Memişoğlu, G., Üster, H.: Integrated bioenergy supply chain network planning problem. Transp. Sci. 50(1), 35–56 (2016)

    Article  Google Scholar 

  27. Meng, Z., Zhang, Z., Zhou, H.: A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters. Appl. Math. Model. 77, 773–787 (2020)

    Article  MathSciNet  Google Scholar 

  28. Misra, K.B.: An algorithm to solve integer programming problems: an efficient tool for reliability design. Microelectron. Reliab. 31(2), 285–294 (1991)

    Article  Google Scholar 

  29. Numbi, B.P., Xia, X.: Optimal energy control of a crushing process based on vertical shaft impactor. Appl. Energy 162, 1653–1661 (2016)

    Article  Google Scholar 

  30. Orefice, L., Khinast, J.G.: Dem study of granular transport in partially filled horizontal screw conveyors. Powder Technol. 305, 347–356 (2017)

    Article  Google Scholar 

  31. Pagnoncelli, B., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142, 399–416 (2009)

    Article  MathSciNet  Google Scholar 

  32. Painton, L., Campbell, J.: Genetic algorithms in optimization of system reliability. IEEE Trans. Reliab. 44(2), 172–178 (1995)

    Article  Google Scholar 

  33. Pham, V., El-Halwagi, M.: Process synthesis and optimization of biorefinery configurations. AIChE J. 58(4), 1212–1221 (2012)

    Article  Google Scholar 

  34. Prasad, V.R., Kuo, W.: Reliability optimization of coherent systems. IEEE Trans. Reliab. 49(3), 323–330 (2000)

    Article  Google Scholar 

  35. Roni, M.S., Eksioglu, S.D., Searcy, E., Jha, K.: A supply chain network design model for biomass co-firing in coal-fired power plants. Transp. Res. Part E: Logist. Transp. Rev. 61, 115–134 (2014)

  36. Scherer, V., Mönnigmann, M., Berner, M.O., Sudbrock, F.: Coupled dem-CFD simulation of drying wood chips in a rotary drum: baffle design and model reduction. Fuel 184, 896–904 (2016)

    Article  Google Scholar 

  37. Sims, R.: Bioenergy to mitigate for climate change and meet the needs of society, the economy and the environment. Mitig. Adapt. Strat. Glob. Change 8(4), 349–370 (2003)

    Article  Google Scholar 

  38. Thomopoulos, N.T.: Triangular, pp. 107–112. Springer, Cham (2017)

  39. DOE U.S. Department of Energy. Biorefinery optimization workshop summary report (2016)

  40. Xia, Y., Lai, Z., Westover, T., Klinger, J., Huang, H., Chen, Q.: Discrete element modeling of deformable pinewood chips in cyclic loading test. Powder Technol. 345, 1–14 (2019)

    Article  Google Scholar 

  41. Yancey, N., JayaShankar, T.: Size reduction, drying and densification of high moisture biomass. Q. Progress Report. Idaho National Laboratory, Idaho Fall, Idaho, USA (2015)

    Google Scholar 

  42. Yang, B., Li, X., Xie, M., Tan, F.: A generic data-driven software reliability model with model mining technique. Reliab. Eng. Syst. Saf. 95(6), 671–678 (2010)

    Article  Google Scholar 

  43. Yang, J.-E., Hwang, M.-J., Sung, T.-Y., Jin, Y.: Application of genetic algorithm for reliability allocation in nuclear power plants. Reliab. Eng. Syst. Saf. 65(3), 229–238 (1999)

    Article  Google Scholar 

  44. You, F., Tao, L., Graziano, D.J., Snyder, S.W.: Optimal design of sustainable cellulosic biofuel supply chains: multiobjective optimization coupled with life cycle assessment and input-output analysis. AIChE J. 58(4), 1157–1180 (2012)

    Article  Google Scholar 

  45. Zhang, S., Xia, X.: Optimal control of operation efficiency of belt conveyor systems. Appl. Energy 87(6), 1929–1937 (2010)

    Article  Google Scholar 

  46. Zhou, B., Ileleji, K., Ejeta, G.: Physical property relationships of bulk corn Stover particles. Trans. ASABE 51, 581–590 (2008)

    Article  Google Scholar 

  47. Zondervan, E., Nawaz, M., de Haan, A.B., Woodley, J.M., Gani, R.: Optimal design of a multi-product biorefinery system. Comput. Chem. Eng. 35(9), 1752–1766 (2011). (Energy Systems Engineering)

Download references

Acknowledgements

Funding The funding of this work was provided by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office under award Number DE- EE0008255 and Department of Energy Idaho Operations Office Contract No. DE-AC07- 05ID14517. The authors greatly thank INL staff in the DOE Biomass Feedstock National User Facility for providing technical data for this study. Specifically, we acknowledge Neal A. Yancey and Jaya S. Tumuluru, who are the individual INL contributors to this research who provided helpful comments, data, and other forms of support for this analysis. The views expressed herein are those of the author only, and do not necessarily represent the views of DOE or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra D. Eksioglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Detailed notations

Table 16 Detailed mathematical notation

Detailed formulation

Introducing a surrogate linear objective function. The true objective of this problem is to minimize the total operational cost per dry tons of biomass processed during the planning horizon, which is computed using unit “dollar per dry ton” ($/dt). In this case the energy consumption and operation cost function, \({\hat{f}}(\cdot )\) is as follows:

$$\begin{aligned} {\hat{f}}(X_{ts}, I_{ts}, \omega _s) = \frac{ \displaystyle \sum _{i \in {\mathbf{N}}} T(e_i + c_i)}{\displaystyle \sum _{t\in {\mathcal {T}}} (1-m_{i_rts}) X_{i_rts} }. \end{aligned}$$

As a result the true objective that we evaluate is given by:

$$\begin{aligned} \min \ \sum _{i \in {\mathbf{E}}^m}h_i I_{i0} + \frac{1}{S} \frac{\displaystyle \sum _{i\in {\mathbf{N}}} T(e_i + c_i) }{\displaystyle \left[\sum _{s=1}^{S} \sum _{t\in {\mathcal {T}}} (1-m_{i_rts}) X_{i_rts} \right]}. \end{aligned}$$

However, this results in a non-convex objective function, which makes the problem hard to solve. Notice that, in order to minimize the total cost per dry ton, we need to maximize the amount of biomass processed, while using minimum initial inventory. By this observation, we consider the following surrogate linear objective function, which makes the problem much easier to solve.

$$\begin{aligned} \min \ \sum _{i \in E^m} h_i I_{i0} - \left( \frac{1}{S} \left[\sum _{s=1}^{S} \sum _{t\in {\mathcal {T}}} (1-m_{i_rts})X_{i_rts} \right]\right) . \end{aligned}$$

Note that two terms (i.e., holding cost and average amount of biomass processed) of this surrogate objective function have different units. In order to resolve this we used a weighted sum of the two terms, where the weight of the initial holding cost is much smaller.

Use of this surrogate objective function leads to the following chance-constrained stochastic linear program:

$$\begin{aligned} ({\hat{P}}) {:}{=} \min \,&\sum _{i \in E^m} h_i I_{i0} - \left( \frac{1}{S} \left[\sum _{s=1}^{S} \sum _{t\in {\mathcal {T}}} (1-m_{i_rts})X_{i_rts} \right]\right)&\end{aligned}$$
(21)
$$\begin{aligned} \text {s.t. }&0 \le V_{it} \le {\bar{v}}_i(\kappa _t), \,&\forall i \in {\mathbf{N}}, t \in {\mathcal {T}}, \end{aligned}$$
(22)
$$\begin{aligned}&0 \le I_{i0} \le {\bar{\iota }}_i(\kappa _0),\&\forall i \in {\mathbf{E}}^m, \end{aligned}$$
(23)
$$\begin{aligned}&X_{0ts} = \gamma _{0} d_{0ts}V_{1t}, \,&\forall t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(24)
$$\begin{aligned}&X_{its} = (1-\phi _i-\varphi _{it}(\kappa _t))\sum _{j \in {\varvec{\delta _i^-}}}X_{jts} ,\&\forall i \in {\mathbf{E}}^g, t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(25)
$$\begin{aligned}&X_{its} \le \gamma _{i}d_{its} V_{it}, \,&\forall i \in {\mathbf{E}}^r, t\in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(26)
$$\begin{aligned}&X_{its} = \sum _{j \in {\varvec{\delta _i^-}}}X_{jts}, \,&\forall i \in {\mathbf{E}}^r \setminus \{i_{b1}, (i_{b2})\}, t\in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(27)
$$\begin{aligned}&X_{i_{b1},ts} = (1 - \theta _{ts}) X_{i_bts}, \,&\forall t\in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(28)
$$\begin{aligned}&X_{(i_{b2}),ts} = \theta _{ts} X_{i_bts}, \,&\forall t\in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(29)
$$\begin{aligned}&X_{its} = \gamma _{i}d_{its}V_{it}, \,&\forall i \in {\mathbf{E}}^m, t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(30)
$$\begin{aligned}&I_{i1s} = I_{i0} + \sum _{j \in {\varvec{\delta _i^-}}}X_{j1s} - X_{i1s}, \,&\forall i \in {\mathbf{E}}^m, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(31)
$$\begin{aligned}&I_{its} = I_{i(t-1)s} + \sum _{j \in {\varvec{\delta _i^-}}}X_{jts} - X_{its}, \,&\forall i \in \mathbf{E}^m, t \in {\mathcal {T}}\setminus \{1\}, s \in {\varvec{{\mathcal {S}}}}\nonumber \\ \end{aligned}$$
(32)
$$\begin{aligned}&I_{its} \ge {\underline{\iota }}_i d_{its}, \,&\forall i \in \mathbf{E}^m , t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}}\nonumber \\ \end{aligned}$$
(33)
$$\begin{aligned}&I_{its} \le {\bar{\iota }}_i d_{its}, \,&\forall i \in {\mathbf{E}}^m, t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}}\nonumber \\ \end{aligned}$$
(34)
$$\begin{aligned}&X_{its} = (1-\varphi _{it}(\kappa _t)) \left( (1-\frac{{\hat{t}}_i}{t}) \sum _{j \in {\varvec{\delta _i^-}}}X_{jts} + I_{i(t-1)s} \right) , \,&\forall i \in {\mathbf{E}}^{mill}, t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}}\nonumber \\ \end{aligned}$$
(35)
$$\begin{aligned}&I_{its} = I_{i(t-1)s} + \sum _{j \in {\varvec{\delta _i^-}}}X_{jts} - X_{its}, \,&\forall i \in \mathbf{E}^{mill}, t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}}\nonumber \\ \end{aligned}$$
(36)
$$\begin{aligned}&I_{its} \le {\bar{\iota }}_i d_{its}, \,&\forall i \in \mathbf{E}^{mill}, t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}}\nonumber \\ \end{aligned}$$
(37)
$$\begin{aligned}&(1-m_{its})X_{its} \le {\bar{x}}_i(\kappa _t), \,&\forall i \in {\mathbf{E}}^p, t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}}\nonumber \\ \end{aligned}$$
(38)
$$\begin{aligned}&(1- m_{i_rts}) X_{i_rts} \le {\overline{r}}, \,&\forall t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(39)
$$\begin{aligned}&X_{0ts}, X_{its} \ge 0, \,&\forall i \in {\mathbf{N}}, t \in {\mathcal {T}}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(40)
$$\begin{aligned}&I_{i0}\ge 0, \,&\forall i \in {\mathbf{E}}^m \cup {\mathbf{E}}^{mill}, \end{aligned}$$
(41)
$$\begin{aligned}&I_{its} \ge 0, \,&\forall i \in {\mathbf{E}}^m \cup {\mathbf{E}}^{mill}, s \in {\varvec{{\mathcal {S}}}} \end{aligned}$$
(42)
$$\begin{aligned}&\displaystyle \frac{1}{S}\sum _{s=1}^S {\mathbb {1}}\left[ \frac{1}{T} \sum _{t \in {\mathcal {T}}} (1- m_{i_rts}) X_{i_rts} \ge r \right] \ge 1-{\hat{\epsilon }}. \end{aligned}$$
(43)

The bypass ratio in the separation unit is calculated as follows:

$$\begin{aligned} \theta _{ts} {:}{=} {\left\{ \begin{array}{ll} \max \{0.5 - 0.4(\rho _{1ts}^{50}-6.35)/(\rho _{1ts}^{50} - \rho _{1ts}^{10}), 0\} &{}\text {for}\, \rho _{1ts}^{50} \ge 6.35\\ \min \{0.5 + 0.4(6.35 - \rho _{1ts}^{50})/(\rho _{1ts}^{90} - \rho _{1ts}^{50}), 1\} &{}\text {for}\, \rho _{1ts}^{50} < 6.35, \end{array}\right. }\nonumber \\ \end{aligned}$$
(44)

where, the value 6.35 (in mm) corresponds to the screen size used in the separation unit.

We explain the constraints in formulation \(({\hat{P}})\) as follows:

  • Constraints (22) and (23) correspond to the constraints (3) and constraints (7) in the succinct formulation (\({\hat{P}}\)) in the main document. They represent the bounds on the equipment processing speed and initial inventory, respectively.

  • Constraints (24), (25), (30), and (35) represent the flow calculations for processing and storage equipment. These constraints correspond to constraints (10) in the succinct formulation (\({\hat{P}}\)) in the main document. For example, constraints (25) calculate the biomass flow with respect to the moisture and dry matter losses during the grinding process.

  • Constraints (26) represent the upper limit on the amount of biomass flow from each transportation equipment \(i \in {\mathbf{E}}^r\). These constraints correspond to constraints (11) in the succinct formulation (\({\hat{P}}\)) in the main document.

  • In the transportation equipment, the biomass flowing into the equipment equals to the biomass flowing from it. Constraints (27), (28), and (29) represent these flow balance equations, just like constraints (9) in the succinct formulation (\({\hat{P}}\)) in the main document.

  • Constraints (31) and (32) are the inventory balance constraints of the storage equipment \(i \in {\mathbf{E}}^m\). They are also a part of constraints (10) in the succinct formulation (\({\hat{P}}\)) in the main document.

  • Constraints (33) and (34) set the upper and lower thresholds for the inventory level. The inventory upper bound comes from the storage equipment’s capacity. The lower threshold is required for consistent flow out of the storage equipment \({\mathbf{E}}^m\). Although the volume of a storage equipment is fixed, variations in the biomass density impact the amount of biomass allowed to be stored. These constraints are the detailed version of constraints (12) in the succinct formulation (\({\hat{P}}\)) in the main document.

  • Pelleting process takes \({\hat{t}}_i\) units of time (which is less than the chosen time period t) in the pelleting mill i. The pelleting mill has an in-process storage capacity, which keeps the biomass during the pelleting process. Constraints (36) and (37) represent the inventory balance and inventory capacity in pelleting mill \({\mathbf{E}}^{mill}\), respectively. In the succinct formulation in the main documents, we included these constraints within constraints (10) and (12), respectively.

  • Processing equipment and the reactor have limits on the amount of biomass flowing into them. Constraints (38) and (39) represent these upper limits. These constraints are part of constraints (10) in the succinct formulation (\({\hat{P}}\)) in the main document.

Data tables

Table 17 Energy consumption and fixed costs
Table 18 Particle size distribution percentiles
Table 19 Moisture and dry matter changes
Table 20 Equipment infeed rate limits

A bisection search based heuristic algorithm for solving the SAA problem (\({\hat{P}}\))

figure a

Regression analysis for biomass density

Table 21 Regression analysis statistics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulcan, B., Eksioglu, S.D., Song, Y. et al. Optimization models for integrated biorefinery operations. Optim Lett 16, 909–951 (2022). https://doi.org/10.1007/s11590-021-01767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-021-01767-4

Keywords

Navigation