Skip to main content
Log in

Friction Stir Processing of ZM21-nHA Surface Ceramic Nano-Composites in Simulated Body Fluid

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) was applied to incorporate nano-hydroxyapatite (nHA) into magnesium alloy ZM21, resulting in a nano-composite with very small grain size. Addition of nHA particles enhances biomineralization and delay magnesium degradation, and grain refinement through FSP. At stir zones of FSP ZM21 and FSP ZM21-nHA composite, grain size decreased from 56 to 20 µm. The small grain structure of the ZM21-nHA composite was found to increase wettability in studies that included a 72-h immersion in super-saturated simulated body fluid (SBF 5×). The nHA particles also stimulated heterogeneous nucleation, which promoted the rapid initiation and expansion of the calcium phosphate mineral phase. In addition, nHA particles served as nucleation sites, leading to the composite’s quick biomineralization. After 72 h of immersion, the FSP ZM21 and FSP ZM21-nHA composite improved biomineralization, reducing the degradation caused by localized pitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Song G, Corros Sci 49 (2007) 1696.

    Article  CAS  Google Scholar 

  2. Witte F, Hort N, Vogt C, Cohen S, Kainer K U, Willumeit R, et al., Curr Opin Solid State Mater Sci 12 (2008) 63. https://doi.org/10.1016/j.cossms.2009.04.001

    Article  ADS  CAS  Google Scholar 

  3. Witte F, Fischer J, Nellesen J, Crostack H A, Kaese V, Pisch A, et al., Biomaterials 27 (2006) 1013.

    Article  CAS  PubMed  Google Scholar 

  4. Wang H, Estrin Y, and Zúberová Z, Mater Lett 62 (2008) 2476.

    Article  CAS  Google Scholar 

  5. Keim S, Brunner J G, Fabry B, and Virtanen S, J Biomed Mater Res B Appl Biomater 96 B (2011) 84.

    Article  Google Scholar 

  6. Song G L, and Atrens A, Adv Eng Mater 1 (1999) 11.

    Article  CAS  Google Scholar 

  7. Hornberger H, Virtanen S, and Boccaccini A R, Acta Biomater 8 (2012) 2442. https://doi.org/10.1016/j.actbio.2012.04.012

    Article  CAS  PubMed  Google Scholar 

  8. Shadanbaz S, and Dias G J, Acta Biomater 8 (2012) 20. https://doi.org/10.1016/j.actbio.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Estrin Y, Fu H, Song G, and Zúberová Z, Adv Eng Mater 9 (2007) 967.

    Article  Google Scholar 

  10. Mishra R S, and Ma Z Y, Mater Sci Eng R Rep 50 (2005) 1.

    Article  Google Scholar 

  11. Mishra R S, Mahoney M W, McFadden S X, Mara N A, and Mukherjee A K, Scr Mater 42 (1999) 163.

    Article  Google Scholar 

  12. Mishra R S, Ma Z Y, and Charit I, Mater Sci Eng A 341 (2003) 307.

    Article  Google Scholar 

  13. Morisada Y, Fujii H, Nagaoka T, Nogi K, and Fukusumi M, Compos Part A Appl Sci Manuf 38 (2007) 2097.

    Article  Google Scholar 

  14. Song Y, Shan D, Chen R, Zhang F, and Han E H, Mater Sci Eng C 29 (2009) 1039. https://doi.org/10.1016/j.msec.2008.08.026

    Article  CAS  Google Scholar 

  15. Lee C J, Huang J C, and Hsieh P J, Scr Mater 54 (2006) 1415.

    Article  CAS  Google Scholar 

  16. Azizieh M, Kokabi A H, and Abachi P, Mater Des 32 (2011) 2034. https://doi.org/10.1016/j.matdes.2010.11.055

    Article  CAS  Google Scholar 

  17. ASTM E112. Standard Test Methods for Determining Average Grain Size E112–10. Astm E112–10. 96(2010)1.

  18. Wenzel R N, Ind Eng Chem 28 (1936) 988.

    Article  CAS  Google Scholar 

  19. ASTM G31–72. ASTM G31: Standard Practice for Laboratory Immersion Corrosion Testing of Metals. ASTM International i(Reapproved)(2004)5.

  20. Mansfeld F, Adv Corros Sci Technol (1976) 163.

  21. Rameshbabu N, Rao K P, and Kumar T S S, J Mater Sci 40 (2005) 6319.

    Article  ADS  CAS  Google Scholar 

  22. Shrivastava V, Singh P, Gupta G K, Srivastava S K, and Singh I B, J Alloys Compd 857 (2021) 157590.

    Article  CAS  Google Scholar 

  23. Witte F, Feyerabend F, Maier P, Fischer J, Störmer M, Blawert C, et al., Biomaterials 28 (2007) 2163.

    Article  CAS  PubMed  Google Scholar 

  24. Aafaq A A, and Jailani H S, Arab J Sci Eng. 48 (2023) 3647. https://doi.org/10.1007/s13369-022-07247-w

    Article  CAS  Google Scholar 

  25. Wilson C J, Clegg R E, Leavesley D I, Pearcy M J, et al., Tissue Eng. 11(2005).

  26. Witecka A, Bogucka A, Yamamoto A, Máthis K, Krajňák T, Jaroszewicz J, et al., Mater Sci Eng C 65 (2016) 59.

    Article  CAS  Google Scholar 

  27. Harikrishna K L, Dilip J J S, Choudary K R, Rao V V S, Rao S R K, Ram G D J, et al., Trans Indian Inst Met 63 (2010) 807.

    Article  CAS  Google Scholar 

  28. Jiang J, Geng X, and Zhang X, J Magnes Alloys 11 (2023) 1906.

    Article  CAS  Google Scholar 

  29. Op’t Hoog C, Birbilis N, and Estrin Y, Adv Eng Mater 10 (2008) 579.

    Article  Google Scholar 

  30. Argade G R, Panigrahi S K, and Mishra R S, Corros Sci 58 (2012) 145. https://doi.org/10.1016/j.corsci.2012.01.021

    Article  CAS  Google Scholar 

  31. Pardo A, Feliu S, Merino M C, Arrabal R, and Matykina E, Int J Corros 2010 (2010) 7.

    Article  Google Scholar 

  32. Kirkland N T, Birbilis N, and Staiger M P, Acta Biomater 8 (2012) 925. https://doi.org/10.1016/j.actbio.2011.11.014

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Lim J Y, Donahue H J, Dhurjati R, Mastro A M, and Vogler E A, Biomaterials 28 (2007) 4535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Thirumurugan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzammiluddin, M., Thirumurugan, M. Friction Stir Processing of ZM21-nHA Surface Ceramic Nano-Composites in Simulated Body Fluid. Trans Indian Inst Met 77, 657–665 (2024). https://doi.org/10.1007/s12666-023-03151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03151-5

Keywords

Navigation