Skip to main content
Log in

Effect of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of ERNiCrMo-3 Weld Metals

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A investigation was done to determine the effect of post-weld heat treatment on the microstructure and mechanical properties of ERNiCrMo-3 weld metals produced by metal inert gas shielded welding. The microstructure investigation revealed that the elements were irregularly distributed and severely segregated between the interdendritic region and dendrite core. Along the interdendritic region, a sizable number of secondary phases are also observed. The dissolution of Laves phase during the post-weld heat treatment would promote the precipitation of the M23C6 carbide along the grain boundaries. The post-weld heat treatment seemly deteriorated the tensile properties of weld metal and changed the fracture mode from transgranular to a mixed mode of transgranular and intergranular fracture. The M23C6 carbide precipitation at the grain boundaries during the aging heat treatment may be blamed for the decline in mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mithilesh P, Varun D, Reddy A R G, Ramkumar K D, and Narayanan S, Procedia Eng 75 (2014) 66. https://doi.org/10.1016/j.proeng.2013.11.013

    Article  CAS  Google Scholar 

  2. Sun Y, Li Y, Qi Y, Cai X, and Ma C, Mater Lett 328 (2022) 133120. https://doi.org/10.1016/j.matlet.2022.133120

    Article  CAS  Google Scholar 

  3. Ramkumar K D, Singh A, Raghuvanshi S, Bajpai A, and Narayanan S, J Manuf Process 19 (2015) 212. https://doi.org/10.1016/j.jmapro.2015.04.005

    Article  Google Scholar 

  4. Li D, Guo Q, Guo S, Peng H, and Wu Z, Mater Des 32 (2011) 696. https://doi.org/10.1016/j.matdes.2010.07.040

    Article  CAS  Google Scholar 

  5. Vishwakarma K R, Richards N L, and Chaturvedi M C, Mater Sci Eng: A 480 (2008) 517. https://doi.org/10.1016/j.msea.2007.08.002

    Article  CAS  Google Scholar 

  6. Shankar V, Gill T P S, Mannan S L, and Sundaresan S, Sadhana 28 (2003) 359. https://doi.org/10.1007/BF02706438

    Article  CAS  Google Scholar 

  7. Bhatti A A, Barsoum Z, Murakawa H, and Barsoum I, Mater Des 65 (2015) 878. https://doi.org/10.1016/j.matdes.2014.10.019

    Article  CAS  Google Scholar 

  8. Xing X, Di X, and Wang B, J Alloys Compound 593 (2014) 110. https://doi.org/10.1016/j.jallcom.2013.12.224

    Article  CAS  Google Scholar 

  9. Yu K, Tang X, Jiang L, Ye X, and Li Z, J Mater Sci 57 (2022) 9415. https://doi.org/10.1007/s10853-021-06769-2

    Article  CAS  Google Scholar 

  10. Xu F, Lv Y, Liu Y, Xu B, and He P, Phys Procedia 50 (2013) 48. https://doi.org/10.1016/j.phpro.2013.11.010

    Article  CAS  Google Scholar 

  11. Kreitcberg A, Brailovski V, and Turenne S, Mater Sci Eng A 689 (2017) 1. https://doi.org/10.1016/j.msea.2017.02.038

    Article  CAS  Google Scholar 

  12. Davis S H, Theory of solidification, 1st Edition, Cambridge University Press, 8th October 2001, 218 pp, Paperback ISBN: 9781139429634,

  13. Lippold J C, Kiser S D, DuPont J N, Welding metallurgy and weldability of nickel-base alloys, 1st Edition, Wiley, 20th September 2011, 12 pp, Paperback ISBN:9781118210031

  14. Qi H, Azer M, and Ritter A, Metall Mater Trans A 40 (2009) 2410. https://doi.org/10.1007/s11661-009-9949-3

    Article  CAS  Google Scholar 

  15. Mathew M D, Parameswaran P, and Rao K B S, Mater Character 59 (2008) 508. https://doi.org/10.1016/j.matchar.2007.03.007

    Article  CAS  Google Scholar 

  16. Lee H S, Kim D H, Kim D S, and Yoo K B, J Alloys Compound 561 (2013) 135. https://doi.org/10.1016/j.jallcom.2013.01.129

    Article  CAS  Google Scholar 

  17. Xu F, Lv Y, Liu Y, Shu F, and Xu B, J Mater Sci Technol 29 (2013) 480. https://doi.org/10.1016/j.jmst.2013.02.010

    Article  CAS  Google Scholar 

  18. Floreen S, Fuchs G E, and Yang W J, Superalloys 718 (1994) 13.

    Article  Google Scholar 

  19. Silva C C, De Albuquerque V H C, Miná E M, Moura E P, and Tavares J M R, Metall Mater Trans A 49 (2018) 1653. https://doi.org/10.1007/s11661-018-4526-2

    Article  CAS  Google Scholar 

  20. Marchese G, Lorusso M, Parizia S, Bassini E, and Biamino S, Mater Sci Eng A 729 (2018) 64. https://doi.org/10.1016/j.msea.2018.05.044

    Article  CAS  Google Scholar 

  21. Karmuhilan M and Kumanan S, Vacuum, 207 (2023) 111682. https://doi.org/10.1016/j.vacuum.2022.111682

  22. Yangfan W, Xizhang C, and Chuanchu S, Surf Coat Technol 374 (2019) 116. https://doi.org/10.1016/j.surfcoat.2019.05.079

    Article  CAS  Google Scholar 

  23. Mittra J, Banerjee S, Tewari R, and Dey G K, Mater Sci Eng: A 574 (2013) 86. https://doi.org/10.1016/j.msea.2013.03.021

    Article  CAS  Google Scholar 

  24. Hu R, Bai G, Li J, Zhang J, and Fu H, Mater Sci Eng A 548 (2012) 83. https://doi.org/10.1016/j.msea.2012.03.092

    Article  CAS  Google Scholar 

  25. Ramkumar K D, Mulimani S S, Ankit K, Kothari A, Ganguly S, Mater Sci Eng A, 808 (2021) 140926. https://doi.org/10.1016/j.msea.2021.140926

  26. Sui S, Tan H, Chen J, Zhong C, and Huang W, Acta Mater 164 (2019) 413. https://doi.org/10.1016/j.actamat.2018.10.032

    Article  CAS  Google Scholar 

  27. Ram G J, Reddy A V, Rao K P, Reddy G M, and Sundar J S, J Mater Process Technol 167 (2005) 73. https://doi.org/10.1016/j.jmatprotec.2004.09.081

    Article  CAS  Google Scholar 

  28. Nitin S, Rahul S M, and Manas M M, Mater Sci Eng A 716 (2018) 179. https://doi.org/10.1016/j.msea.2018.01.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Grant Number BK20201036); the Special Talent Introduction for “Double Innovation Plan” in 2020; the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (Grant Number ASMA202007) and the Introduction of Talent Research Fund at Nanjing Institute of Technology (Grant Number YKJ201954).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Ethics declarations

Competing interest

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Wan, J., Zhang, X. et al. Effect of Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of ERNiCrMo-3 Weld Metals. Trans Indian Inst Met 76, 3031–3039 (2023). https://doi.org/10.1007/s12666-023-03085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03085-y

Keywords

Navigation